Sneh Tal, Corsetti Sabrina, Notaros Milica, Kikkeri Kruthika, Voldman Joel, Notaros Jelena
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2024 Oct 3;15(1):8493. doi: 10.1038/s41467-024-52273-x.
Integrated optical tweezers have the potential to enable highly-compact, low-cost, mass-manufactured, and broadly-accessible optical manipulation when compared to standard bulk-optical tweezers. However, integrated demonstrations to date have been fundamentally limited to micron-scale standoff distances and, often, passive trapping functionality, making them incompatible with many existing applications and significantly limiting their utility, especially for biological studies. In this work, we demonstrate optical trapping and tweezing using an integrated OPA for the first time, increasing the standoff distance of integrated optical tweezers by over two orders of magnitude compared to prior demonstrations. First, we demonstrate trapping of polystyrene microspheres 5 mm above the surface of the chip and calibrate the trap force. Next, we show tweezing of polystyrene microspheres in one dimension by non-mechanically steering the trap by varying the input laser wavelength. Finally, we use the OPA tweezers to demonstrate, to the best of our knowledge, the first cell experiments using single-beam integrated optical tweezers, showing controlled deformation of mouse lymphoblast cells. This work introduces a new modality for integrated optical tweezers, significantly expanding their utility and compatibility with existing applications, especially for biological experiments.
与标准的体光学镊子相比,集成光学镊子有潜力实现高度紧凑、低成本、大规模制造且广泛可用的光学操控。然而,迄今为止的集成演示在本质上局限于微米级的间隔距离,并且通常是被动捕获功能,这使得它们与许多现有应用不兼容,并显著限制了其效用,特别是在生物学研究方面。在这项工作中,我们首次展示了使用集成光学参量放大器(OPA)进行光捕获和光镊操作,与之前的演示相比,集成光学镊子的间隔距离增加了两个多数量级。首先,我们展示了在芯片表面上方5毫米处捕获聚苯乙烯微球,并校准了捕获力。接下来,我们通过改变输入激光波长非机械地操纵光阱,展示了在一维上对聚苯乙烯微球的光镊操作。最后,据我们所知,我们使用OPA光镊进行了首次使用单光束集成光学镊子的细胞实验,展示了对小鼠淋巴母细胞的可控变形。这项工作为集成光学镊子引入了一种新的模式,显著扩展了它们的效用以及与现有应用的兼容性,特别是在生物学实验方面。