Suppr超能文献

使用交叉递归量化分析计算不等长时间序列的相似性度量及其在睡眠阶段分析中的应用。

Using cross-recurrence quantification analysis to compute similarity measures for time series of unequal length with applications to sleep stage analysis.

机构信息

Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway.

Institute for Sustainability Education and Psychology, Leuphana University of Lüneburg, 21335, Lüneburg, Germany.

出版信息

Sci Rep. 2024 Oct 4;14(1):23142. doi: 10.1038/s41598-024-73225-x.

Abstract

Comparing time series of unequal length requires data processing procedures that may introduce biases. This article describes, validates, and applies Cross-Recurrence Quantification Analysis (CRQA) to detect and quantify correlation and coupling among time series of unequal length without prior data processing. We illustrate and validate this application using continuous and discrete data from a model system (study 1). Then we use the method to re-analyze the Sleep Heart Health Study (SHHS), a rare large dataset comprising detailed physiological sleep measurements acquired by in-home polysomnography. We investigate whether recurrence patterns of ultradian NREM/REM sleep cycles (USC) predict mortality (study 2). CRQA exhibits better performance compared with traditional approaches that require trimming, stretching or compression to bring two time series to the same length. Application to the SHHS indicates that recurrence patterns linked to stability of USCs are associated with all-cause mortality even after controlling for other sleep parameters, health, and sociodemographics. We suggest that CRQA is a useful tool for analyzing categorical time series, where the underlying structure of the data is unlikely to result in matching data points-such as ultradian sleep cycles.

摘要

比较长度不等的时间序列需要数据处理程序,这些程序可能会引入偏差。本文描述、验证并应用交叉递归量化分析(CRQA)来检测和量化不等长度时间序列之间的相关性和耦合,而无需事先进行数据处理。我们使用模型系统中的连续和离散数据(研究 1)来说明和验证这种应用。然后,我们使用该方法重新分析睡眠心脏健康研究(SHHS),这是一个罕见的大型数据集,包含通过家庭多导睡眠图获得的详细生理睡眠测量数据。我们研究超短 REM/NREM 睡眠周期(USC)的复发模式是否可以预测死亡率(研究 2)。与需要修剪、拉伸或压缩以使两个时间序列达到相同长度的传统方法相比,CRQA 具有更好的性能。应用于 SHHS 表明,与 USC 稳定性相关的复发模式与全因死亡率相关,即使在控制了其他睡眠参数、健康和社会人口统计学因素之后也是如此。我们建议 CRQA 是分析分类时间序列的有用工具,在这种情况下,数据的底层结构不太可能导致匹配的数据点,例如超短睡眠周期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b709/11452724/9390d545cf20/41598_2024_73225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验