Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India.
Int J Biol Macromol. 2024 Nov;281(Pt 2):136291. doi: 10.1016/j.ijbiomac.2024.136291. Epub 2024 Oct 4.
Malaria remains a global health issue, especially in resource-limited regions. Artemisinin, a key antimalarial compound from Artemisia annua, is crucial for treatment, but low natural yields hinder large-scale production. In this study, we employed advanced transgenic technology to co-overexpress six key biosynthetic enzymes-Isopentenyl Diphosphate Isomerase (IDI), Farnesyl Pyrophosphate Synthase (FPS), Amorpha 4,11-diene Synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), cytochrome P450 oxidoreductase (AACPR) and artemisinic aldehyde D11 reductase (DBR2)-in A. annua to significantly enhance artemisinin production. Our innovative approach utilized a co-expression strategy to optimize the artemisinin biosynthetic pathway, leading to a remarkable up to 200 % increase in artemisinin content in T1 transgenic plants compared to non-transgenic controls. The stability and efficacy of this transformation were confirmed in subsequent generations (T2), achieving a potential 232 % increase in artemisinin levels. Additionally, we optimized transgene expression to maintain plant growth and development, and performed untargeted metabolite analysis using GC-MS, which revealed significant changes in metabolite composition among T2 lines, indicating effective diversion of farnesyl diphosphate into the artemisinin pathway. This metabolic engineering breakthrough offers a promising and scalable solution for enhancing artemisinin production, representing a major advancement in the field of plant biotechnology and a potential strategy for more cost-effective malaria treatment.
疟疾仍然是一个全球性的健康问题,特别是在资源有限的地区。青蒿素是青蒿中一种关键的抗疟化合物,对治疗至关重要,但由于天然产量低,限制了大规模生产。在这项研究中,我们采用先进的转基因技术,共同过表达六个关键生物合成酶——异戊烯二磷酸异构酶(IDI)、法呢基焦磷酸合酶(FPS)、紫穗槐二烯合酶(ADS)、细胞色素 P450 单加氧酶(CYP71AV1)、细胞色素 P450 氧化还原酶(AACPR)和青蒿醛 D11 还原酶(DBR2),以显著提高青蒿素的产量。我们的创新方法利用共表达策略来优化青蒿素的生物合成途径,导致 T1 转基因植物中的青蒿素含量比非转基因对照提高了高达 200%。这种转化的稳定性和有效性在后续世代(T2)中得到了证实,青蒿素水平提高了潜在的 232%。此外,我们优化了转基因表达以维持植物的生长和发育,并使用 GC-MS 进行非靶向代谢物分析,结果显示 T2 系之间的代谢物组成发生了显著变化,表明法呢基二磷酸有效地转向了青蒿素途径。这一代谢工程突破为提高青蒿素产量提供了一个有前途和可扩展的解决方案,代表了植物生物技术领域的重大进展,也是更具成本效益的疟疾治疗的潜在策略。