Suppr超能文献

氮通过促进苹果叶片中草酸的生物合成来降低钙的有效性。

Nitrogen reduces calcium availability by promoting oxalate biosynthesis in apple leaves.

作者信息

Xing Yue, Feng Zi-Quan, Zhang Xin, Cao Hong-Xing, Liu Chun-Ling, Qin Han-Han, Jiang Han, Zhu Zhan-Ling, Ge Shun-Feng, Jiang Yuan-Mao

机构信息

College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.

Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China.

出版信息

Hortic Res. 2024 Jul 30;11(10):uhae208. doi: 10.1093/hr/uhae208. eCollection 2024 Oct.

Abstract

N and Ca are essential nutrients for apple growth and development. Studies have found that Ca content was not low under high N conditions but was poorly available. However, the underlying physiological mechanism through which N regulates Ca availability remains unclear. In this study, apple plants were supplied with N and Ca to analyse the content, in situ distribution, and forms of Ca using noninvasive micro-test technique, electron probe microanalysis, Fourier transform infrared spectroscopy, and transcriptome analysis. A potential interaction was observed between N and Ca in apple leaves. The application of high N and Ca concentration led to a CaOx content of 12.51 g/kg, representing 93.54% of the total Ca in the apple leaves. Electron probe microanalysis revealed that Ca deposited in the phloem primarily existed as CaOx rhombus-shaped crystals. Additionally, high N positively regulated oxalate accumulation in the leaves, increasing it by 40.79 times compared with low N concentration. Specifically, N induced oxalate synthesis in apple leaves by upregulating the , , and genes, while simultaneously inhibiting degradation through downregulation of the gene. Transcriptome and correlation analyses further confirmed oxaloacetate as the precursor for the synthesis of CaOx crystals in the apple leaves, which were produced via the 'photosynthesis/glycolysis -oxaloacetate -oxalate -CaOx' pathway. WGCNA identified potential regulators of the CaOx biosynthesis pathway triggered by N. Overall, the results provide insights into the regulation of Ca availability by N in apple leaves and support the development of Ca efficient cultivation technique.

摘要

氮和钙是苹果生长发育所必需的营养元素。研究发现,在高氮条件下钙含量并不低,但有效性较差。然而,氮调节钙有效性的潜在生理机制仍不清楚。在本研究中,对苹果植株供应氮和钙,采用非损伤微测技术、电子探针微分析、傅里叶变换红外光谱和转录组分析来分析钙的含量、原位分布及形态。在苹果叶片中观察到氮和钙之间存在潜在的相互作用。高氮和高钙处理导致苹果叶片中草酸钙含量为12.51 g/kg,占叶片总钙含量的93.54%。电子探针微分析表明,沉积在韧皮部的钙主要以菱形草酸钙晶体形式存在。此外,高氮正向调节叶片中草酸盐的积累,与低氮浓度相比增加了40.79倍。具体而言,氮通过上调、和基因诱导苹果叶片中草酸盐的合成,同时通过下调基因抑制其降解。转录组和相关性分析进一步证实草酰乙酸是苹果叶片中草酸钙晶体合成的前体,其通过“光合作用/糖酵解-草酰乙酸-草酸盐-草酸钙”途径产生。加权基因共表达网络分析(WGCNA)确定了由氮触发的草酸钙生物合成途径的潜在调节因子。总体而言,这些结果为苹果叶片中氮对钙有效性的调节提供了见解,并支持了高效钙栽培技术的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/995e/11450213/05ee3089d757/uhae208f1.jpg

相似文献

1
Nitrogen reduces calcium availability by promoting oxalate biosynthesis in apple leaves.
Hortic Res. 2024 Jul 30;11(10):uhae208. doi: 10.1093/hr/uhae208. eCollection 2024 Oct.
3
Visualisation of calcium oxalate crystal macropatterns in plant leaves using an improved fast preparation method.
J Microsc. 2023 Jun;290(3):168-177. doi: 10.1111/jmi.13187. Epub 2023 Apr 21.
4
Heavy metal stress reduces the deposition of calcium oxalate crystals in leaves of Phaseolus vulgaris.
J Plant Physiol. 2005 Oct;162(10):1183-7. doi: 10.1016/j.jplph.2005.03.002.
6
The effect of calcium on calcium oxalate monohydrate crystal-induced renal epithelial injury.
Urol Res. 2009 Feb;37(1):1-6. doi: 10.1007/s00240-008-0160-6. Epub 2008 Nov 13.
7
Calcium oxalate degradation is involved in aerenchyma formation in Typha angustifolia leaves.
Funct Plant Biol. 2018 Aug;45(9):922-934. doi: 10.1071/FP17349.
8
Effects of exogenous calcium on cadmium accumulation in amaranth.
Chemosphere. 2023 Jun;326:138435. doi: 10.1016/j.chemosphere.2023.138435. Epub 2023 Mar 16.
9
Calcium Oxalate Crystals in Leaves of the Extremophile Plant (Kunth) Bartl. (Caryophyllaceae).
Plants (Basel). 2021 Aug 27;10(9):1787. doi: 10.3390/plants10091787.
10
In Situ Accumulation of CaOx Crystals in Leaves and Its Relationship with Anatomy and Gas Exchange.
Plants (Basel). 2024 Mar 8;13(6):769. doi: 10.3390/plants13060769.

本文引用的文献

1
Transcriptomics and metabolomics reveal the primary and secondary metabolism changes in with different forms of nitrogen utilization.
Front Plant Sci. 2023 Nov 2;14:1229253. doi: 10.3389/fpls.2023.1229253. eCollection 2023.
3
Rhubarb: A novel model plant to study the conundrum of calcium oxalate synthesis.
Food Chem. 2024 Feb 15;434:137458. doi: 10.1016/j.foodchem.2023.137458. Epub 2023 Sep 15.
4
Nitrogen supply affects ion homeostasis by modifying root Casparian strip formation through the miR528-LAC3 module in maize.
Plant Commun. 2023 Jul 10;4(4):100553. doi: 10.1016/j.xplc.2023.100553. Epub 2023 Jan 21.
5
Oxalate in Plants: Metabolism, Function, Regulation, and Application.
J Agric Food Chem. 2022 Dec 28;70(51):16037-16049. doi: 10.1021/acs.jafc.2c04787. Epub 2022 Dec 13.
6
The Tomato Transcription Factor SlNAC063 Is Required for Aluminum Tolerance by Regulating Expression.
Front Plant Sci. 2022 Mar 15;13:826954. doi: 10.3389/fpls.2022.826954. eCollection 2022.
9
A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis.
Mol Plant. 2021 May 3;14(5):774-786. doi: 10.1016/j.molp.2021.02.005. Epub 2021 Feb 16.
10
Studies on the translocation characteristics of C-photoassimilates to fruit during the fruit development stage in 'Fuji' apple.
Plant Physiol Biochem. 2020 Sep;154:636-645. doi: 10.1016/j.plaphy.2020.06.044. Epub 2020 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验