UCLouvain, Louvain Drug Research Institute, Cellular & Molecular Pharmacology, Brussels, Belgium.
UCLouvain, Louvain Institute of Biomolecular Science and Technology, nanoBiophysics, Louvain-la-Neuve, Belgium.
Microbiol Spectr. 2024 Nov 5;12(11):e0148424. doi: 10.1128/spectrum.01484-24. Epub 2024 Oct 7.
In Gram-negative bacteria, the outer membrane (OM) is asymmetric, with lipopolysaccharides (LPS) in the outer leaflet and glycerophospholipids (GPLs) in the inner leaflet. The asymmetry is maintained by the Mla system (MlaA-MlaBCDEF), which contributes to lipid homeostasis by removing mislocalized GPLs from the outer leaflet of the OM. Here, we ascribed how ATCC 27853 coordinately regulates pathways to provide defense against the threats posed by the deletion of . Especially, we explored (i) the effects on membrane lipid composition including LPS, GPLs, and lysophospholipids, (ii) the biophysical properties of the OM such as stiffness and fluidity, and (iii) the impact of these changes on permeability, antibiotic susceptibility, and membrane vesicles (MVs) generation. Deletion of induced an increase in total GPLs and a decrease in LPS level while also triggering alterations in lipid A structures (arabinosylation and palmitoylation), likely to be induced by a two-component system (PhoPQ-PmrAB). Altered lipid composition may serve a physiological purpose in regulating the mechanobiological and functional properties of sa. We demonstrated an increase in cell stiffness without alteration of turgor pressure and inner membrane (IM) fluidity in ∆. In addition, membrane vesiculation increased without any change in OM/IM permeability. An amphiphilic aminoglycoside derivative (3',6-dinonyl neamine) that targets membranes induced an opposite effect on ∆ strain with a trend toward a return to the situation observed for the WT strain. Efforts dedicated to understanding the crosstalk between the OM lipid composition, and the mechanical behavior of bacterial envelope, is one needed step for designing new targets or new drugs to fight infections.IMPORTANCE is a Gram-negative bacterium responsible for severe hospital-acquired infections. The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore, compromising this structure could increase sensitivity to antibiotics. The OM is asymmetric with the highly packed lipopolysaccharide monolayer at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. In this study, we show that deleting , the membrane component of Mla system located at the OM, affects the mechanical and functional properties of cell envelope. Our results provide insights into the role of MlaA, involved in the Mla transport pathway in .
在革兰氏阴性菌中,外膜(OM)是不对称的,脂多糖(LPS)位于外叶,甘油磷脂(GPLs)位于内叶。这种不对称性由 Mla 系统(MlaA-MlaBCDEF)维持,该系统通过将定位错误的 GPL 从 OM 的外叶中去除来维持脂质平衡。在这里,我们确定了 ATCC 27853 如何协调调节途径,以提供对缺失的威胁的防御。特别是,我们探索了(i)对膜脂质组成的影响,包括 LPS、GPLs 和溶血磷脂,(ii)OM 的生物物理特性,如刚性和流动性,以及(iii)这些变化对通透性、抗生素敏感性和膜囊泡(MVs)生成的影响。缺失诱导总 GPL 增加和 LPS 水平降低,同时还触发脂质 A 结构(阿拉伯化和棕榈酰化)的改变,这可能是由双组分系统(PhoPQ-PmrAB)诱导的。改变的脂质组成可能在调节 sa 的力学和功能特性方面具有生理意义。我们证明了在 ∆ 中细胞刚性增加而膨压和内膜(IM)流动性没有改变。此外,膜囊泡形成增加而 OM/IM 通透性没有变化。一种靶向 膜的两亲性氨基糖苷衍生物(3',6-二壬基正胺)对 ∆ 菌株产生相反的影响,表现出向 WT 菌株观察到的情况的趋势。致力于理解 OM 脂质组成与细菌包膜机械行为之间的串扰,是设计针对 感染的新靶点或新药的必要步骤。
重要性是一种革兰氏阴性菌,负责严重的医院获得性感染。革兰氏阴性菌的外膜(OM)是一种有效的有毒化合物屏障,因此破坏这种结构会增加对抗生素的敏感性。OM 是不对称的,高度包裹的脂多糖单层位于外叶,甘油磷脂位于内叶。OM 不对称性由 Mla 途径维持,导致甘油磷脂从 OM 向内膜的逆行运输。在这项研究中,我们表明,缺失 Mla 系统的膜成分,位于 OM 处,会影响 细胞包膜的机械和功能特性。我们的研究结果为 MlaA 在 Mla 转运途径中在 中的作用提供了新的认识。