Suppr超能文献

用于全氟烷基物质等离子体修复中电子诱导过程建模的基础数据。

Fundamental data for modeling electron-induced processes in plasma remediation of perfluoroalkyl substances.

作者信息

Sapunar Marin, Meyer Mackenzie, Ambalampitiya Harindranath B, Kushner Mark J, Mašín Zdeněk

机构信息

Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Phys Chem Chem Phys. 2024 Oct 17;26(40):26037-26050. doi: 10.1039/d4cp01911c.

Abstract

Plasma treatment of per- and polyfluoroalkyl substances (PFAS) contaminated water is a potentially energy efficient remediation method. In this treatment, an atmospheric pressure plasma interacts with surface-resident PFAS molecules. Developing a reaction mechanism and modeling of plasma-PFAS interactions requires fundamental data for electron-molecule reactions. In this paper, we present results of electron scattering calculations, potential energy landscapes and their implications for plasma modelling of a dielectric barrier discharge in PFAS contaminated gases, a first step towards modelling of plasma-water-PFAS intereactions. It is found that the plasma degradation of PFAS is dominated by dissociative electron attachment with the importance of other contributing processes varying depending on the molecule. All molecules posses a large number of shape resonances - transient negative ion states - from near-threshold up to ionization threshold. These states lie in the region of the most probable electron energies in the plasma (4-5 eV) and consequently are expected to further enhance the fragmentation dynamics in both dissociative attachment and dissociative excitation.

摘要

等离子体处理受全氟和多氟烷基物质(PFAS)污染的水是一种具有潜在能源效率的修复方法。在这种处理中,大气压等离子体与表面驻留的PFAS分子相互作用。建立等离子体与PFAS相互作用的反应机理和模型需要电子 - 分子反应的基础数据。在本文中,我们展示了电子散射计算结果、势能面及其对PFAS污染气体中介电屏障放电等离子体建模的影响,这是迈向等离子体 - 水 - PFAS相互作用建模的第一步。研究发现,PFAS的等离子体降解主要由解离电子附着主导,其他贡献过程的重要性因分子而异。所有分子都具有大量的形状共振——瞬态负离子态——从接近阈值到电离阈值。这些态位于等离子体中最可能的电子能量区域(4 - 5电子伏特),因此预计会进一步增强解离附着和解离激发中的碎片化动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验