Ma Wenli, Zhang Jianyu, Zong Jibo, Ren Hongyuan, Tu Deshuang, Xu Qinfeng, Zhong Tang Ben, Yan Hong
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202410430. doi: 10.1002/anie.202410430. Epub 2024 Nov 6.
Recent advances in luminescent materials highlight the significant impact of hydrogen isotope effects on improving optoelectronic properties. However, the research on the influence of the boron isotope effects on photophysical properties remains underdeveloped. This study focused on exploring the boron isotope effects in boron-cluster-based luminogens. In doing so, we designed and synthesized carborane-based luminogens containing 98 % B and 95 % B, respectively, and observed distinct photophysical behaviors. Compared to the B-enriched luminogens, the B-enriched counterparts can significantly enhance luminescence efficiency, prolong emission lifetime, and reduce full-width at half-maximum. Additionally, increased thermal stability, redshifted B-H vibrations, and a fourfold enhanced electrochemiluminescence intensity have also been observed. On the other hand, the biological assessments of a B-enriched luminogen reveals low cytotoxicity, high boron uptake, and excellent fluorescence imaging capability, indicating the potential application in boron neutron capture therapy (BNCT). This work presents the first comprehensive exploration on the boron isotope effects in boron clusters, and provides valuable insights into the rational design of organic luminogens for advanced optoelectronic and biomedical applications.
发光材料的最新进展突出了氢同位素效应在改善光电性能方面的重大影响。然而,关于硼同位素效应对光物理性质影响的研究仍不充分。本研究聚焦于探索基于硼簇的发光体中的硼同位素效应。在此过程中,我们分别设计并合成了含98%B和95%B的碳硼烷基发光体,并观察到了明显的光物理行为。与富含硼的发光体相比,富含硼的对应物可显著提高发光效率、延长发射寿命并减小半高宽。此外,还观察到热稳定性增加、B-H振动红移以及电化学发光强度增强四倍。另一方面,对一种富含硼的发光体的生物学评估显示其具有低细胞毒性、高硼摄取和出色的荧光成像能力,表明其在硼中子俘获疗法(BNCT)中的潜在应用。这项工作首次对硼簇中的硼同位素效应进行了全面探索,并为用于先进光电和生物医学应用的有机发光体的合理设计提供了有价值的见解。