Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
J Control Release. 2024 Dec;376:200-214. doi: 10.1016/j.jconrel.2024.10.006. Epub 2024 Oct 12.
Nanocarriers, more commonly called nanoparticles (NPs), have found increasing use as delivery vehicles which increase the oral bioavailability of poorly water-soluble and peptide therapeutics. Therapeutic bioavailability is commonly assessed by measuring plasma concentrations that reflect the absorption kinetics. This bioavailability is a convolution of the gastrointestinal distribution of the NP vehicle, the release rate of the encapsulated therapeutic cargo, and the absorption-metabolism-distribution kinetics of the released therapeutic. The spatiotemporal distribution of the NP vehicle in the gastrointestinal tract is not well studied and is a buried parameter in PK studies used to measure the effectiveness of an NP formulation. This work is a study of the intestinal distribution and fate of orally dosed NPs in male CD-1 mice over 24 h. NPs have identical hydrophobic cores - composed of poly(styrene) homopolymer, a naphthalocyanine dye, and oleate-coated europium oxide colloids - with one of four different surface stabilizers: neutral poly(styrene)-block-poly(ethylene glycol) (PS-b-PEG), moderately negative hydroxypropyl methylcellulose acetate succinate (HPMCAS), highly negative poly(styrene)-block-poly(acrylic acid) (PS-b-PAA), and highly cationic adsorbed chitosan HCl on PS-b-PAA stabilized NPs. NP hydrodynamic diameters are all below 200 nm, with some variation attributable to the molecular properties of the stabilizing polymer. The encapsulated hydrophobic europium oxide colloids do not release soluble europium ions, enabling the use of highly sensitive inductively coupled plasma mass spectrometry (ICP-MS) to detect NP concentrations in digested biological tissues. Highly anionically-charged PAA and cationically-charged chitosan stabilized NPs showed statistically significant increased retention compared to the neutral PEG-stabilized NPs at p < 0.05 significance and (1-β) > 0.95 power. HPMCAS-stabilized NPs showed statistically insignificant greater retention than PEG-stabilized NPs, and all NP formulations showed clearance from the intestines within 24 h. Different surface charges preferentially reside in different segments of the intestines, where cationic chitosan-stabilized NPs showed increased retention in the small intestines (ileum) and anionic PAA-stabilized NPs in the large intestines (caecum and colon). Modifying the surface charge of a NP can be used to modulate mucoadhesion, total retention, and intestinal segment specific retention, which enables the rational design of delivery vehicles that maximize residence times in appropriate locations.
纳米载体,通常称为纳米颗粒 (NPs),已被广泛用作递药载体,以提高水溶性差和肽类治疗药物的口服生物利用度。治疗生物利用度通常通过测量反映吸收动力学的血浆浓度来评估。这种生物利用度是 NP 载体在胃肠道中的分布、包裹治疗货物的释放率以及释放治疗物质的吸收-代谢-分布动力学的卷积。NP 载体在胃肠道中的时空分布尚未得到很好的研究,并且是用于测量 NP 制剂有效性的 PK 研究中的隐藏参数。这项工作是研究雄性 CD-1 小鼠在 24 小时内口服给予 NPs 的肠道分布和命运。NPs 具有相同的疏水核心 - 由聚苯乙烯均聚物、萘菁染料和油酸包覆的氧化铕胶体组成 - 具有四种不同表面稳定剂之一:中性聚苯乙烯-嵌段-聚(乙二醇)(PS-b-PEG)、中度负羟丙基甲基纤维素醋酸琥珀酸酯(HPMCAS)、高度负聚苯乙烯-嵌段-聚(丙烯酸)(PS-b-PAA)和高度阳离子吸附壳聚糖 HCl 在 PS-b-PAA 稳定的 NPs 上。NP 水动力直径均低于 200nm,一些变化归因于稳定聚合物的分子特性。包封的疏水性氧化铕胶体不会释放可溶性铕离子,从而能够使用高灵敏度电感耦合等离子体质谱 (ICP-MS) 检测消化生物组织中的 NP 浓度。与中性 PEG 稳定的 NPs 相比,带高度阴离子电荷的 PAA 和带正电荷的壳聚糖稳定的 NPs 表现出统计学上显著的保留增加,p<0.05 意义和 (1-β)>0.95 功率。HPMCAS 稳定的 NPs 与 PEG 稳定的 NPs 相比表现出统计学上无显著差异的保留增加,所有 NP 制剂在 24 小时内从肠道中清除。不同的表面电荷优先存在于肠道的不同部位,其中带正电荷的壳聚糖稳定的 NPs 在小肠(回肠)中表现出增加的保留,带负电荷的 PAA 稳定的 NPs 在大肠(盲肠和结肠)中表现出增加的保留。修饰 NP 的表面电荷可用于调节粘膜粘附、总保留和肠道特定部位的保留,从而能够合理设计使驻留时间最大化的递药载体在适当位置。