Suppr超能文献

利用遥感和原位土壤数据,采用随机森林模型对印度喜马拉雅山区的土壤可蚀性进行制图。

Soil erodibility mapping using remote sensing and in situ soil data with random forest model in a mountainous catchment of Indian Himalayas.

机构信息

Agriculture and Soils Department, Indian Institute of Remote Sensing, Indian Space Research Organisation (ISRO), Dehradun, India.

Forest Research Institute, Deemed to be University, Dehradun, India.

出版信息

Environ Monit Assess. 2024 Oct 8;196(11):1032. doi: 10.1007/s10661-024-13173-1.

Abstract

Land degradation is accelerating in the Himalayan ecosystem, resulting in the loss of soil nutrients due to severe erosion. Soil erosion presents a significant environmental challenge, resulting in both on-site and off-site consequences, such as reduced soil productivity and siltation in reservoirs. Soil erodibility (K factor), an inherent soil property, determines the susceptibility of soils to erosion. Sampling across hilly and mountainous terrain pose challenges due to its complex landscape. Despite these challenges, it is essential to study K factor variations in different land use/land cover types to comprehend the threat of erosion. Digital soil mapping offers an opportunity to overcome this limitation by providing spatial predictions of soil properties. The objective of our study is to map the spatial distribution of soil erodibility using the Random Forest (RF) model, a machine learning method based on sampled in situ soil data and environmental covariates. We collected 556 surface soil samples from the mountainous catchment (Tehri dam catchment) using the stratified random sampling approach. The model performed satisfactorily in both training (r = 0.91; RMSE = 0.00185) and testing (r = 0.45; RMSE = 0.00318) phases. Subsequently, we generated a digital map with a resolution of 12.5 m to depict the distribution of the K factor. Our analysis revealed that key environmental variables influencing the prediction of the K factor included geology, mean NDVI, and climatic factors. The average K factor value was estimated at 0.0304 and ranging from 0.0251 to 0.0400 t ha h ha MJ mm. A higher K factor was observed in the barren land (0.0344) primarily located in the higher and trans-Himalayan region of seasonally snow-covered areas. These areas typically feature young soils with weak soil formation and unstable soil aggregates. Subsequently cropland/cultivated soils (0.0307) exhibited higher K factor values due to the breakdown of soil aggregates by ploughing activities and exposing carbon to decomposition. The average K factor value of evergreen (0.0294) and deciduous (0.0295) forests were the lowest compared to other land use/land cover types indicating the role of forests in resisting soil erosion. By assessing and predicting soil erodibility, land planners and farmers can implement erosion control measures to protect soil health, prevent sedimentation in water bodies, and sustain agricultural productivity in the Himalayas.

摘要

喜马拉雅生态系统的土地退化正在加速,导致土壤养分因严重侵蚀而流失。土壤侵蚀是一个重大的环境挑战,不仅对当地产生影响,还会产生异地影响,如降低土壤生产力和水库淤积。土壤可蚀性(K 因子)是土壤的固有属性,决定了土壤对侵蚀的敏感性。在丘陵和山区进行采样由于其复杂的地形而具有挑战性。尽管存在这些挑战,但研究不同土地利用/土地覆盖类型中 K 因子的变化对于理解侵蚀的威胁至关重要。数字土壤制图通过提供土壤属性的空间预测,为克服这一限制提供了机会。我们的研究目的是使用随机森林(RF)模型对土壤可蚀性进行空间分布制图,这是一种基于采样点原位土壤数据和环境协变量的机器学习方法。我们使用分层随机抽样方法从山区集水区(特赫里大坝集水区)采集了 556 个表层土壤样本。该模型在训练(r=0.91;RMSE=0.00185)和测试(r=0.45;RMSE=0.00318)阶段的表现都很出色。随后,我们生成了分辨率为 12.5 m 的数字地图,以描绘 K 因子的分布。我们的分析表明,影响 K 因子预测的关键环境变量包括地质、平均 NDVI 和气候因素。平均 K 因子值估计为 0.0304,范围为 0.0251 至 0.0400 t ha h ha MJ mm。在主要位于季节性积雪覆盖的高海拔和跨喜马拉雅地区的荒地上,K 因子值较高(0.0344)。这些地区通常具有年轻的土壤,土壤形成较弱,土壤团聚体不稳定。随后,由于犁耕活动破坏了土壤团聚体并使碳暴露于分解,耕地/耕地(0.0307)的 K 因子值较高。与其他土地利用/土地覆盖类型相比,常绿(0.0294)和落叶(0.0295)森林的平均 K 因子值最低,这表明森林在抵御土壤侵蚀方面发挥了作用。通过评估和预测土壤可蚀性,土地规划者和农民可以实施侵蚀控制措施,以保护土壤健康,防止水体淤积,并维持喜马拉雅地区的农业生产力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验