Saeed Saeed, Fleischmann Simon, Kobayashi Takeshi, Jusys Zenonas, Mamontov Eugene, Osti Naresh C, Holzapfel Noah P, Song Haohong, Wang Tao, Dai Sheng, Jiang De-En, Augustyn Veronica
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States.
Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, 89081 Ulm, Germany.
J Am Chem Soc. 2024 Oct 23;146(42):28795-28808. doi: 10.1021/jacs.4c08063. Epub 2024 Oct 8.
Hydrogen titanates (HTOs) form a diverse group of metastable, layered titanium oxides with an interlayer containing both water molecules and structural protons. We investigated how the chemistry of this interlayer environment influenced electrochemical Li-insertion in a series of HTOs, HTiO·HO ( = 3, 4, and 5). We correlated the electrochemical response with the physical and chemical properties of HTOs using operando X-ray diffraction, in situ differential electrochemical mass spectroscopy, solid-state proton nuclear magnetic resonance, and quasi-elastic neutron scattering. We found that the potential for the first reduction reaction trended with the relative acidity of the structural protons. This mechanism was supported with first-principles density functional theory (DFT) calculations. We propose that the electrochemical reaction involves reduction of the structural protons to yield hydrogen gas and formation of a lithiated hydrogen titanate (HLiTiO). The hydrogen gas is confined within the HTO lattice until the titanate structure expands upon subsequent oxidation. Our work has implications for the electrochemical behavior of insertion hosts containing hydrogen and structural water molecules, where hydrogen evolution is expected at potentials below the hydrogen reduction potential and in the absence of electrolyte proton donors. This behavior is an example of electrochemical electron transfer to a nonmetal element in a metal oxide host, in analogy to anion redox.
钛酸氢盐(HTOs)是一类多样的亚稳层状钛氧化物,其层间含有水分子和结构质子。我们研究了这种层间环境的化学性质如何影响一系列HTOs(HTiO·HO,其中 = 3、4和5)中的电化学锂嵌入。我们使用原位X射线衍射、原位差分电化学质谱、固态质子核磁共振和准弹性中子散射,将电化学响应与HTOs的物理和化学性质相关联。我们发现,首次还原反应的电位与结构质子的相对酸度呈趋势相关。该机制得到了第一性原理密度泛函理论(DFT)计算的支持。我们提出,电化学反应涉及结构质子的还原以产生氢气,并形成锂化钛酸氢盐(HLiTiO)。氢气被限制在HTO晶格内,直到钛酸盐结构在随后的氧化过程中膨胀。我们的工作对含有氢和结构水分子的嵌入主体的电化学行为具有启示意义,在没有电解质质子供体的情况下,预计在低于氢还原电位的电位下会发生析氢反应。这种行为是电化学电子转移到金属氧化物主体中的非金属元素的一个例子,类似于阴离子氧化还原。