Suppr超能文献

解析组织蛋白酶 K 抑制剂:基于 QSAR、对接和 MD 模拟的组合机器学习方法在药物设计中的应用。

Deciphering Cathepsin K inhibitors: a combined QSAR, docking and MD simulation based machine learning approaches for drug design.

机构信息

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Korea.

出版信息

SAR QSAR Environ Res. 2024 Sep;35(9):771-793. doi: 10.1080/1062936X.2024.2405626. Epub 2024 Oct 9.

Abstract

Cathepsin K (CatK), a lysosomal cysteine protease, contributes to skeletal abnormalities, heart diseases, lung inflammation, and central nervous system and immune disorders. Currently, CatK inhibitors are associated with severe adverse effects, therefore limiting their clinical utility. This study focuses on exploring quantitative structure-activity relationships (QSAR) on a dataset of CatK inhibitors (1804) compiled from the ChEMBL database to predict the inhibitory activities. After data cleaning and pre-processing, a total of 1568 structures were selected for exploratory data analysis which revealed physicochemical properties, distributions and statistical significance between the two groups of inhibitors. PubChem fingerprinting with 11 different machine-learning classification models was computed. The comparative analysis showed the ET model performed well with accuracy values for the training set (0.999), cross-validation (0.970) and test set (0.977) in line with OECD guidelines. Moreover, to gain structural insights on the origin of CatK inhibition, 15 diverse molecules were selected for molecular docking. The CatK inhibitors (1 and 2) exhibited strong binding energies of -8.3 and -7.2 kcal/mol, respectively. MD simulation (300 ns) showed strong structural stability, flexibility and interactions in selected complexes. This synergy between QSAR, docking, MD simulation and machine learning models strengthen our evidence for developing novel and resilient CatK inhibitors.

摘要

组织蛋白酶 K(CatK)是一种溶酶体半胱氨酸蛋白酶,与骨骼异常、心脏病、肺部炎症以及中枢神经系统和免疫系统紊乱有关。目前,CatK 抑制剂与严重的不良反应相关,因此限制了其临床应用。本研究旨在通过对 ChEMBL 数据库中 CatK 抑制剂(1804 个)数据集进行定量构效关系(QSAR)研究,以预测其抑制活性。在数据清理和预处理后,选择了 1568 个结构进行探索性数据分析,揭示了抑制剂两组之间的理化性质、分布和统计学意义。计算了包含 11 种不同机器学习分类模型的 PubChem 指纹图谱。对比分析表明,ET 模型表现良好,其在训练集(0.999)、交叉验证集(0.970)和测试集(0.977)中的准确率符合 OECD 指南。此外,为了深入了解 CatK 抑制的结构基础,选择了 15 种不同的分子进行分子对接。CatK 抑制剂(1 和 2)的结合能分别为-8.3 和-7.2 kcal/mol,显示出较强的结合能力。MD 模拟(300 ns)表明所选复合物具有较强的结构稳定性、灵活性和相互作用。QSAR、对接、MD 模拟和机器学习模型之间的协同作用,为开发新型、有弹性的 CatK 抑制剂提供了有力证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验