Lavela Sergio, Santos Antônio Carlos do Nascimento, Motta Fabiana Villela da, Bomio Mauricio Roberto Delmonte, Lavela Pedro, Pérez Vicente Carlos, Tirado José Luis
Departamento de Química Inorgánica e Ingeniería Química, Instituto Químico para la Energía y el Medioambiente, Universidad de Córdoba, Edificio Marie Curie, Campus de Rabanales, 14071 Córdoba, Spain.
LSQM - Laboratory of Chemical Synthesis of Materials, Department of Materials Engineering, Federal University of Rio Grande do Norte - UFRN, P.O. Box 1524, Natal, RN, 59078-970, Brazil.
ACS Appl Mater Interfaces. 2024 Oct 23;16(42):56975-56986. doi: 10.1021/acsami.4c09706. Epub 2024 Oct 9.
This research highlights the efficacy of NaNbO as a coating for P2-NaNiMnO cathodes in sodium-ion batteries. The coating enhances the kinetic behavior and cyclability of the electrochemical cells, as shown by electrochemical measurements. XRD analysis indicates that Nb does not incorporate into the cathode structure, implying a physical interaction between the coating and the cathode material. XRF analysis and EDX mapping confirm the actual composition and uniform dispersion of elements throughout the sample, while the electron micrographs evidence the occurrence of NaNbO particles modifying the surface of the layered oxide. The Ni/Ni and Ni/Ni redox pairs, along with the partially reversible oxidation of oxide to peroxide anions, contribute significantly to cell capacity, as revealed by XPS spectra. This last effect and the appearance of a co-intercalated phase at high voltage are positive factors to provide fast kinetics. Cyclic voltammograms show that samples coated with 2-3% NaNbO have superior rate capability, with high capacitive response and apparent diffusion coefficients. These samples also have low impedance at the electrode-electrolyte interface, which helps deliver a high capacity at 5C. Further cycling at 1C shows improved cyclability in the bare and 3% coated samples, due to their higher diffusion coefficients on charging. Notably, the 3% NaNbO-coated sample exhibits excellent cyclability below 0 °C, making it a promising cathode material for sodium-ion batteries.
本研究突出了NaNbO作为钠离子电池中P2-NaNiMnO正极涂层的功效。如电化学测量所示,该涂层增强了电化学电池的动力学行为和循环稳定性。XRD分析表明,Nb未掺入正极结构中,这意味着涂层与正极材料之间存在物理相互作用。XRF分析和EDX图谱证实了整个样品中元素的实际组成和均匀分散,而电子显微镜照片证明了NaNbO颗粒对层状氧化物表面的改性。XPS光谱显示,Ni/Ni和Ni/Ni氧化还原对以及氧化物部分可逆氧化为过氧阴离子对电池容量有显著贡献。这一最终效应以及在高电压下共嵌入相的出现是提供快速动力学的积极因素。循环伏安图表明,涂覆2-3%NaNbO的样品具有优异的倍率性能,具有高电容响应和明显的扩散系数。这些样品在电极-电解质界面处也具有低阻抗,这有助于在5C下提供高容量。在1C下进一步循环显示,裸样品和3%涂覆样品的循环稳定性有所提高,这是由于它们在充电时具有更高的扩散系数。值得注意的是,3%NaNbO涂覆的样品在低于0°C时表现出优异的循环稳定性,使其成为一种有前景的钠离子电池正极材料。