Suppr超能文献

级配和压实特性对用于底基层和垃圾填埋场衬垫施工的粒料加州承载比影响的建模。

Modeling of the effect of gradation and compaction characteristics on the california bearing ratio of granular materials for subbase and landfill liner construction.

作者信息

Alzara Majed, Onyelowe Kennedy C, Ebid Ahmed M, Hanandeh Shadi, Yosri Ahmed M, Alshammari Talal O

机构信息

Department of Civil Engineering, College of Engineering, Jouf University, Sakakah, Saudi Arabia.

Department of Civil Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria.

出版信息

Sci Rep. 2024 Oct 9;14(1):23630. doi: 10.1038/s41598-024-74106-z.

Abstract

The California bearing ratio (CBR) of a granular materials are influence by the soil particle distribution indices such as D10, D30, D50, and D60 and also the compaction properties such as the maximum dry density (MDD) and the optimum moisture content (OMC). For this reason, the particle packing and compactibility of the soil play a big role in the design and construction of subbases and landfills. In this research paper, experimental data entries have been collected reflecting the CBR behavior of granular soil used to construct landfill and subbase. The database was utilized in the ratio of 78-22% to predict the CBR behavior considering the artificial neural network (ANN), the evolutionary polynomial regression (EPR), the genetic programming (GP), Extreme Gradient Boosting (XGBoost), Random Forest (RF) and the response surface methodology (RSM) intelligent learning and symbolic abilities. The relative importance values for each input parameter were carried out, which indicated that the (CBR) value depends mainly on the average particle size (D30, 50 & 60). They showed a combined influence index of 66% of the considered parameters in the model exercise. This further shows the importance and structural influence of the particles within the D50 and D60 range in a granular material consistency in the design and construction purposes. Performance indices were also used to study the ability of the models. The ANN model showed the best performance with accuracy of 88%, then GP, EPR and RF with almost the same accuracies of 85% and lastly the XGBoost with accuracy of 81%. Also, the RSM produced an R2 of 0.9464 with a p-value of less than 0.0001. These values show that the ANN produced the decisive model with the superior performance indices in the forecast of CBR of granular material used as subbase and waste compacted earth liner material. The results further show that optimal performance of the CBR depended on D50 and D60 for the design of subgrade, subbase, and liner purposes and also during the performance monitoring phase of the constructed flexible pavement foundations and compacted earth liners.

摘要

粒料的加州承载比(CBR)受土壤颗粒分布指数(如D10、D30、D50和D60)以及压实特性(如最大干密度(MDD)和最佳含水量(OMC))的影响。因此,土壤的颗粒堆积和压实性在基层和垃圾填埋场的设计与施工中起着重要作用。在本研究论文中,收集了反映用于建造垃圾填埋场和基层的粒料CBR行为的实验数据条目。考虑到人工神经网络(ANN)、进化多项式回归(EPR)、遗传编程(GP)、极端梯度提升(XGBoost)、随机森林(RF)和响应面方法(RSM)的智能学习和符号能力,以78 - 22%的比例利用该数据库来预测CBR行为。对每个输入参数进行了相对重要性值计算,结果表明CBR值主要取决于平均粒径(D30、50和60)。在模型运算中,它们显示出所考虑参数综合影响指数为66%。这进一步表明了D50和D60范围内的颗粒在粒料设计和施工目的的一致性方面的重要性和结构影响。还使用性能指标来研究模型的能力。ANN模型表现最佳,准确率为88%,其次是GP、EPR和RF,准确率几乎相同,为85%,最后是XGBoost,准确率为81%。此外,RSM产生的R²为0.9464,p值小于0.0001。这些值表明,在预测用作基层和压实垃圾土衬垫材料的粒料CBR时,ANN产生了具有卓越性能指标的决定性模型。结果还表明,对于路基、基层和衬垫的设计以及在已建成的柔性路面基础和压实土衬垫的性能监测阶段,CBR的最佳性能取决于D50和D60。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468e/11464884/ac0cb38a7494/41598_2024_74106_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验