API Process Development Department, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan.
Biotechnol J. 2024 Oct;19(10):e202400212. doi: 10.1002/biot.202400212.
Evaluating the Gibbs-Donnan and volume exclusion effects during protein ultrafiltration and diafiltration (UF/DF) is crucial in biopharmaceutical process development to precisely control the concentration of the drug substance in the final formulation. Understanding the interactions between formulation excipients and proteins under these conditions requires a domain-specific knowledge of molecular-level phenomena. This study developed gradient boosted tree models to predict the Gibbs-Donnan and volume exclusion effects for amino acids and therapeutic monoclonal antibodies using simple molecular descriptors. The models' predictions were interpreted by information gain and Shapley additive explanation (SHAP) values to understand the modes of action of the antibodies and excipients and to validate the models. The results translated feature effects in machine learning to real-world molecular interactions, which were cross-referenced with existing scientific literature for verification. The models were validated in pilot-scale manufacturing runs of two antibody products requiring high levels of concentration. By only requiring a molecule's biophysicochemical descriptors and process conditions, the proposed models provide an in silico alternative to conventional UF/DF experiments to accelerate process development and boost process understanding of the underlying molecular mechanisms through rational interpretation of the models.
评估蛋白质超滤和稀释(UF/DF)过程中的吉布斯-唐南效应和体积排阻效应,对于生物制药工艺开发至关重要,因为这可以精确控制最终制剂中药物物质的浓度。为了在这些条件下理解赋形剂和蛋白质之间的相互作用,需要具备分子水平现象的特定领域知识。本研究开发了梯度提升树模型,使用简单的分子描述符预测氨基酸和治疗性单克隆抗体的吉布斯-唐南效应和体积排阻效应。通过信息增益和 Shapley 可加性解释(SHAP)值对模型预测进行解释,以了解抗体和赋形剂的作用模式并验证模型。研究结果将机器学习中的特征效应转化为实际的分子相互作用,并与现有科学文献进行交叉参考以验证。该模型在需要高浓度的两种抗体产品的中试规模生产运行中得到了验证。通过仅要求分子的生物物理化学描述符和工艺条件,所提出的模型提供了一种替代传统 UF/DF 实验的方法,通过对模型的合理解释,可以加速工艺开发并深入了解潜在的分子机制。