Suppr超能文献

转移性去势抵抗性前列腺癌的治疗反应评估:PSMA-PET/CT会成为主导吗?

Treatment response assessment in mCRPC: is PSMA-PET/CT going to take the lead?

作者信息

Di Franco Martina, Mei Riccardo, Garcia Camilo, Fanti Stefano

机构信息

Nuclear Medicine, Alma Mater Studiorum University of Bologna, Via Massarenti 9, Bologna 40138, Italy.

Nuclear Medicine Unit, University Hospital of Modena, Modena, Italy.

出版信息

Ther Adv Med Oncol. 2024 Oct 7;16:17588359241258367. doi: 10.1177/17588359241258367. eCollection 2024.

Abstract

The assessment of response to therapy in prostate cancer (PCa) patients is an ongoing, open issue. Prostate-specific antigen has limitations, especially in advanced metastatic PCa, which often displays intratumor variability in terms of response to therapy. Conventional imaging (i.e. computerized tomography and bone scan) is of limited use for its low sensitivity and specificity. Positron-emission tomography (PET) with prostate-specific membrane antigen (PSMA) demonstrated higher sensitivity and specificity, and novel PSMA-based criteria have been recently proposed for treatment response, with promising results in different scenarios, from chemotherapy to radioligand therapy. PSMA-based criteria have been found to outperform the current RECIST 1.1 and Prostate Cancer Working Group 3 frameworks in describing the behavior of PCa, precisely assessing tumor phenotypes through molecular-imaging-derived parameters. This review critically explores the current evidence about the role of PSMA PET/computed tomography in the assessment of treatment response.

摘要

前列腺癌(PCa)患者治疗反应的评估是一个持续存在的开放性问题。前列腺特异性抗原存在局限性,尤其是在晚期转移性PCa中,其在治疗反应方面常常表现出肿瘤内的变异性。传统成像(即计算机断层扫描和骨扫描)因其低敏感性和特异性而用途有限。使用前列腺特异性膜抗原(PSMA)的正电子发射断层扫描(PET)显示出更高的敏感性和特异性,并且最近已经提出了基于PSMA的治疗反应标准,在从化疗到放射性配体治疗的不同场景中都取得了有前景的结果。基于PSMA的标准已被发现,在描述PCa的行为、通过分子成像衍生参数精确评估肿瘤表型方面,优于当前的RECIST 1.1和前列腺癌工作组3框架。本综述批判性地探讨了关于PSMA PET/计算机断层扫描在治疗反应评估中作用的当前证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4214/11462558/4125bc925a21/10.1177_17588359241258367-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验