Wang Kuan-Chen, Liu Kai-Chun, Yeh Ping-Cheng, Peng Sheng-Yu, Tsao Yu
IEEE J Biomed Health Inform. 2025 Apr;29(4):2506-2520. doi: 10.1109/JBHI.2024.3475817. Epub 2025 Apr 4.
Surface electromyography (sEMG) is a widely employed bio-signal that captures human muscle activity via electrodes placed on the skin. Several studies have proposed methods to remove sEMG contaminants, as non-invasive measurements render sEMG susceptible to various contaminants. However, these approaches often rely on heuristic-based optimization and are sensitive to the contaminant type. A more potent, robust, and generalized sEMG denoising approach should be developed for various healthcare and human-computer interaction applications. This paper proposes a novel neural network (NN)-based sEMG denoising method called TrustEMG-Net. It leverages the potent nonlinear mapping capability and data-driven nature of NNs. TrustEMG-Net adopts a denoising autoencoder structure by combining U-Net with a Transformer encoder using a representation-masking approach. The proposed approach is evaluated using the Ninapro sEMG database with five common contamination types and signal-to-noise ratio (SNR) conditions. Compared with existing sEMG denoising methods, TrustEMG-Net achieves exceptional performance across the five evaluation metrics, exhibiting a minimum improvement of 20%. Its superiority is consistent under various conditions, including SNRs ranging from -14 to 2 dB and five contaminant types. An ablation study further proves that the design of TrustEMG-Net contributes to its optimality, providing high-quality sEMG and serving as an effective, robust, and generalized denoising solution for sEMG applications.
表面肌电图(sEMG)是一种广泛应用的生物信号,它通过放置在皮肤上的电极来捕捉人体肌肉活动。由于非侵入性测量使sEMG容易受到各种污染物的影响,一些研究提出了去除sEMG污染物的方法。然而,这些方法通常依赖于基于启发式的优化,并且对污染物类型敏感。对于各种医疗保健和人机交互应用,应该开发一种更有效、更强大且更通用的sEMG去噪方法。本文提出了一种基于新型神经网络(NN)的sEMG去噪方法,称为TrustEMG-Net。它利用了神经网络强大的非线性映射能力和数据驱动的特性。TrustEMG-Net采用去噪自动编码器结构,通过使用表示掩码方法将U-Net与Transformer编码器相结合。使用Ninapro sEMG数据库对五种常见污染类型和信噪比(SNR)条件下提出的方法进行了评估。与现有的sEMG去噪方法相比,TrustEMG-Net在五个评估指标上都取得了优异的性能,最小提升幅度为20%。在包括-14到2 dB的SNR范围和五种污染类型在内的各种条件下,其优势都是一致的。一项消融研究进一步证明,TrustEMG-Net的设计有助于其优化,能够提供高质量的sEMG,并作为一种有效、强大且通用的sEMG去噪解决方案应用于sEMG应用中。