Zhang Yang, Lin Ling-Fang, Moreo Adriana, Maier Thomas A, Dagotto Elbio
Department of Physics and Astronomy, <a href="https://ror.org/020f3ap87">University of Tennessee</a>, Knoxville, Tennessee 37996, USA.
Materials Science and Technology Division, <a href="https://ror.org/01qz5mb56">Oak Ridge National Laboratory</a>, Oak Ridge, Tennessee 37831, USA.
Phys Rev Lett. 2024 Sep 27;133(13):136001. doi: 10.1103/PhysRevLett.133.136001.
Motivated by the recently reported signatures of superconductivity in trilayer La_{4}Ni_{3}O_{10} under pressure, we comprehensively study this system using ab initio and random-phase approximation techniques. Without electronic interactions, the Ni d_{3z^{2}-r^{2}} orbitals show a bonding-antibonding and nonbonding splitting behavior via the O p_{z} orbitals inducing a "trimer" lattice in La_{4}Ni_{3}O_{10}, analogous to the dimers of La_{3}Ni_{2}O_{7}. The Fermi surface consists of three electron sheets with mixed e_{g} orbitals, and a hole and an electron pocket made up of the d_{3z^{2}-r^{2}} orbital, suggesting a Ni two-orbital minimum model. In addition, we find that superconducting pairing is induced in the s^{±}-wave channel due to partial nesting between the M=(π,π) centered pockets and portions of the Fermi surface centered at the Γ=(0,0) point. With changing electronic density n, the s^{±} instability remains leading and its pairing strength shows a domelike behavior with a maximum around n=4.2 (∼6.7% electron doping). The superconducting instability disappears at the same electronic density as that in the new 1313 stacking La_{3}Ni_{2}O_{7}, correlated with the vanishing of the hole pocket that arises from the trilayer sublattice, suggesting that the high-T_{c} superconductivity of La_{3}Ni_{2}O_{7} does not originate from a trilayer and monolayer structure. Furthermore, we confirm the experimentally proposed spin state in La_{4}Ni_{3}O_{10} with an in-plane (π, π) order and antiferromagnetic coupling between the top and bottom Ni layers, and spin zero in the middle layer.
受近期报道的三层La₄Ni₃O₁₀在压力下的超导特征的启发,我们使用第一性原理和随机相位近似技术对该体系进行了全面研究。在没有电子相互作用的情况下,Ni的d₃z²⁻r²轨道通过O的pz轨道表现出成键-反键和非键分裂行为,在La₄Ni₃O₁₀中诱导出一种“三聚体”晶格,类似于La₃Ni₂O₇的二聚体。费米面由三个具有混合eg轨道的电子片、一个由d₃z²⁻r²轨道构成的空穴和一个电子口袋组成,这表明存在一个Ni双轨道最小模型。此外,我们发现由于以M=(π,π)为中心的口袋与以Γ=(0,0)点为中心的费米面部分之间的部分嵌套,在s⁺⁻波通道中诱导出了超导配对。随着电子密度n的变化,s⁺⁻不稳定性仍然占主导,其配对强度呈现出穹顶状行为,在n = 4.2(约6.7%电子掺杂)左右达到最大值。超导不稳定性在与新的1313堆叠的La₃Ni₂O₇相同的电子密度下消失,这与由三层亚晶格产生的空穴口袋的消失相关,表明La₃Ni₂O₇的高温超导性并非源于三层和单层结构。此外,我们证实了实验提出的La₄Ni₃O₁₀中的自旋态,即面内(π, π)有序且顶部和底部Ni层之间存在反铁磁耦合,而中间层自旋为零。