Zhang Li, Ge Yong, Guan Yi-Jun, Chen Fujia, Han Ning, Chen Qiaolu, Pan Yuang, Jia Ding, Yuan Shou-Qi, Sun Hong-Xiang, Christensen Johan, Chen Hongsheng, Yang Yihao
Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, <a href="https://ror.org/00a2xv884">Zhejiang University</a>, Hangzhou 310027, China.
International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, <a href="https://ror.org/00a2xv884">Zhejiang University</a>, Haining 314400, China.
Phys Rev Lett. 2024 Sep 27;133(13):136601. doi: 10.1103/PhysRevLett.133.136601.
Nonreciprocity in acoustics is of paramount importance in many practical applications and has been experimentally realized using nonlinear media, moving fluids, or time modulation, which regrettably suffer from large volumes and high-power consumption, difficulty in integration, and inevitable vibrations or phase noise. In modern Hamiltonian theory, the violation of system's reciprocity can be achieved via asymmetric Peierls phases, which typically involves with non-Hermiticity or time-reversal symmetry breaking. Here, we propose a framework for designing nonreciprocal acoustic devices based on the asymmetric Peierls phases that can be fully controlled via active acoustic components. The fully controlled Peierls phases enable various high-performance acoustic devices, including non-Hermitian extensions of isolators, gyrators, and circulators, which are otherwise impossible in previous approaches that are bound by Hermiticity or passivity. We reveal that the transmission phases in isolators are equivalent to the Peierls phase plus a constant. The nonreciprocal phase delay in gyrators and the unirotational transmission behavior in circulators result from the gauge-invariant Aharonov-Bohm phases determined by Peierls phases. Our work not only uncovers multiple intriguing physics related to Peierls phases but also provides a general approach to compact, integratable, nonreciprocal acoustic devices.
声学中的非互易性在许多实际应用中至关重要,并且已经通过非线性介质、流动流体或时间调制在实验中实现,但遗憾的是,这些方法存在体积大、功耗高、集成困难以及不可避免的振动或相位噪声等问题。在现代哈密顿理论中,违反系统互易性可通过非对称派尔斯相位来实现,这通常涉及非厄米性或时间反演对称性破缺。在此,我们提出了一个基于非对称派尔斯相位设计非互易声学器件的框架,该框架可通过有源声学元件进行完全控制。完全可控的派尔斯相位能够实现各种高性能声学器件,包括隔离器、回转器和环行器的非厄米扩展,而这些在以前受厄米性或无源性限制的方法中是不可能实现的。我们揭示了隔离器中的传输相位等同于派尔斯相位加上一个常数。回转器中的非互易相位延迟和环行器中的单向传输行为是由派尔斯相位确定的规范不变阿哈罗诺夫 - 玻姆相位引起的。我们的工作不仅揭示了与派尔斯相位相关的多种有趣物理现象,还为紧凑、可集成的非互易声学器件提供了一种通用方法。