Suppr超能文献

MATES:一种基于深度学习的单细胞中转座元件定位定量模型。

MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell.

机构信息

School of Computer Science, McGill University, Montreal, Quebec, Canada.

Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.

出版信息

Nat Commun. 2024 Oct 11;15(1):8798. doi: 10.1038/s41467-024-53114-7.

Abstract

Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either 'best-mapped' or 'random-mapped' locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.

摘要

转座元件 (TEs) 对遗传多样性和基因调控至关重要。目前的单细胞定量方法通常将多映射读取与“最佳映射”或“随机映射”位置对齐,并在亚家族水平对其进行分类,忽略了准确、特定基因座 TE 定量的生物学必要性。此外,这些现有方法主要针对和专注于转录组学数据,这限制了它们对其他模态的单细胞数据的适应性。为了解决这些挑战,我们在这里引入了 MATES,这是一种深度学习方法,它利用 TE 基因座侧翼相邻读取对齐的上下文,将多映射读取准确分配到 TE 的特定基因座上。当应用于各种单细胞组学数据集时,MATES 显示出优于现有方法的性能,提高了 TE 定量的准确性,并有助于为鉴定的细胞群体识别标记 TE。这一发展通过 TEs 探索单细胞异质性和基因调控,为单细胞基因组学社区提供了一种有效的转座子定量工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a254/11470080/d7eaf835a2eb/41467_2024_53114_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验