Suppr超能文献

基于 3D 聚合晶格微结构的微针阵列用于透皮电化学生物传感。

3D Polymeric Lattice Microstructure-Based Microneedle Array for Transdermal Electrochemical Biosensing.

机构信息

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.

Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia.

出版信息

Adv Mater. 2024 Nov;36(48):e2412999. doi: 10.1002/adma.202412999. Epub 2024 Oct 11.

Abstract

Microneedles (MNs) or microneedle arrays (MNAs) are critical components of minimally invasive devices comprised of a single or a series of micro-scale projections. MNs can bypass the outermost layer of the skin and painlessly access microcirculation of the epidermis and dermis layers, attracting great interest in the development of personalized healthcare monitoring and diagnostic devices. However, MN technology has not yet reached its full potential since current micro- and nanofabrication methods do not address the need of fabricating MNs with complex surfaces to facilitate the development of clinically adequate devices. This work presents a new approach that combines 3D printing technology based on two-photon polymerization with soft lithography for cost-effective and time-saving fabrication of complex MNAs. Specifically, this method relies on printing complex 3D objects efficiently replicated into polymeric substrates via soft lithography, resulting in a free-standing polymeric lattice (PL) membrane that can be transferred onto gold-coated MNs and used for electrochemical biosensing. This platform shows excellent electrochemical performance in detecting metabolite (glucose) and protein (insulin) biomarkers with a dynamic linear range sufficient for detecting biomarkers in healthy individuals and patients. The approach holds great potential for fabricating next-generationMNs, including their transfer into clinically adequate devices.

摘要

微针(MNs)或微针阵列(MNAs)是由单个或一系列微尺度突起组成的微创装置的关键组成部分。MNs 可以绕过皮肤的最外层,无痛地进入表皮和真皮层的微循环,这在个性化医疗保健监测和诊断设备的开发中引起了极大的兴趣。然而,由于当前的微纳加工方法不能满足制造具有复杂表面的 MNs 的需求,从而无法充分发挥 MN 技术的潜力,以促进临床足够的设备的发展。这项工作提出了一种新方法,该方法结合了基于双光子聚合的 3D 打印技术和软光刻技术,以实现具有成本效益和节省时间的复杂 MNAs 的制造。具体来说,该方法依赖于通过软光刻高效复制到聚合物基底中的复杂 3D 物体的打印,从而得到可以转移到金涂覆的 MNs 上并用于电化学生物传感的独立聚合物格子(PL)膜。该平台在检测代谢物(葡萄糖)和蛋白质(胰岛素)生物标志物方面表现出优异的电化学性能,其动态线性范围足以检测健康个体和患者的生物标志物。该方法在制造下一代 MNs 方面具有很大的潜力,包括将其转移到临床足够的设备中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验