Alfayyadh Mohammed M, Maksemous Neven, Sutherland Heidi G, Lea Rodney A, Griffiths Lyn R
Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.
Clin Genet. 2025 Feb;107(2):157-168. doi: 10.1111/cge.14625. Epub 2024 Oct 12.
The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigation. Notably, the genetic heterogeneity of HM is underscored by the fact that approximately two-thirds of patients lack pathogenic variants in the known causal ion channel genes. In this context, we have developed PathVar, a novel bioinformatics algorithm that harnesses publicly available tools and software for pathogenic variant discovery in NGS data. PathVar integrates a suite of tools, including HaplotypeCaller from the Genome Analysis Toolkit (GATK) for variant calling, Variant Effect Predictor (VEP) and ANNOVAR for variant annotation, and TAPES for assigning the American College of Medical Genetics and Genomics (ACMG) pathogenicity labels. Applying PathVar to whole exome sequencing data from 184 HM patients, we detected 648 variants that are probably pathogenic in multiple patients. Moreover, we have identified several candidate genes for HM, many of which cluster around the Rho GTPases pathway. Future research can leverage PathVar to generate high quality, candidate pathogenic variants, which may enhance our understanding of HM and other complex diseases.
下一代测序(NGS)数据的指数级增长需要创新的生物信息学方法来揭示疾病的遗传基础。偏瘫性偏头痛(HM)是一种具有遗传基础的使人衰弱的神经系统疾病,就是这样一种值得进一步研究的病症。值得注意的是,约三分之二的患者在已知的致病离子通道基因中缺乏致病变异,这突出了HM的遗传异质性。在此背景下,我们开发了PathVar,这是一种新型生物信息学算法,它利用公开可用的工具和软件在NGS数据中发现致病变异。PathVar整合了一套工具,包括来自基因组分析工具包(GATK)的HaplotypeCaller用于变异检测、变异效应预测器(VEP)和ANNOVAR用于变异注释,以及TAPES用于指定美国医学遗传学与基因组学学会(ACMG)的致病性标签。将PathVar应用于184例HM患者的全外显子组测序数据,我们检测到648个可能在多名患者中致病的变异。此外,我们已经确定了几个HM的候选基因,其中许多聚集在Rho GTPases途径周围。未来的研究可以利用PathVar来生成高质量的候选致病变异,这可能会增进我们对HM和其他复杂疾病的理解。