Ahmadi Mostafa, Bauer Melanie, Berg Johannes, Seiffert Sebastian
Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany.
ACS Nano. 2024 Oct 22;18(42):29282-29293. doi: 10.1021/acsnano.4c11841. Epub 2024 Oct 14.
Various transient and permanent bonds are commonly combined in increasingly complex hierarchical structures to achieve biomimetic functions, along with high mechanical properties. However, there is a traditional trade-off between mechanical strength and biological functions like self-healing. To fill this gap, we develop a metallo-supramolecular polymer hydrogel based on the hyperbranched poly(ethylene imine) (PEI) backbone and phenanthroline ligands, which have unexpectedly high plateau modulus at low concentrations. Rheological measurements demonstrate nonuniversal metal-ion-specific dynamics, with significantly larger plateau moduli, longer relaxation times, and stronger temperature dependencies, compared to equivalent networks based on model-type telechelic precursors, which cannot be explained by the theory of linear viscoelasticity. TEM images reveal the mineralization of metal ions, which nucleate by the ligand complexation and grow thanks to the spontaneous reducing effect of the PEI backbone. Evidently, the complex lifetime works against Ostwald ripening, resulting in the formation of thermodynamically stable smaller particles. This trend is followed by time-dependent network buildup measurements and is confirmed by a kinetic model for particle formation and aggregation. The spontaneous formation of particles with complex lifetime-dependent sizes can explain the nonuniversal dynamics through the interaction of polymer segments and particles at the nanoscale. This work describes how the polymer backbone can affect the strength and stability of supramolecular bonds, promising for combining high mechanical properties and self-healing comparable to natural tissues.
各种瞬态和永久性键通常在日益复杂的层次结构中结合,以实现仿生功能以及高机械性能。然而,在机械强度和诸如自愈等生物学功能之间存在传统的权衡。为了填补这一空白,我们基于超支化聚(乙烯亚胺)(PEI)主链和菲咯啉配体开发了一种金属超分子聚合物水凝胶,其在低浓度下具有出乎意料的高原模量。流变学测量表明,与基于模型型遥爪前体的等效网络相比,其具有非通用的金属离子特异性动力学,具有明显更大的高原模量、更长的弛豫时间和更强的温度依赖性,这无法用线性粘弹性理论来解释。透射电子显微镜图像揭示了金属离子的矿化,其通过配体络合而成核,并由于PEI主链的自发还原作用而生长。显然,络合物寿命抑制了奥斯特瓦尔德熟化,导致形成热力学稳定的较小颗粒。这种趋势在随时间变化的网络形成测量中得到体现,并通过颗粒形成和聚集的动力学模型得到证实。具有与络合物寿命相关尺寸的颗粒的自发形成可以通过聚合物链段与纳米级颗粒之间的相互作用来解释非通用动力学。这项工作描述了聚合物主链如何影响超分子键的强度和稳定性,有望实现与天然组织相当的高机械性能和自愈性能的结合。