文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用生存机器学习确定阿尔茨海默病的蛋白质组学预后标志物:弗雷明汉心脏研究

Identifying Proteomic Prognostic Markers for Alzheimer's Disease with Survival Machine Learning: the Framingham Heart Study.

作者信息

Leng Yuanming, Ding Huitong, Alvin Ang Ting Fang, Au Rhoda, Doraiswamy P Murali, Liu Chunyu

机构信息

Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.

Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.

出版信息

medRxiv. 2024 Sep 23:2024.09.21.24314123. doi: 10.1101/2024.09.21.24314123.


DOI:10.1101/2024.09.21.24314123
PMID:39399041
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11469405/
Abstract

BACKGROUND: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations. METHODS: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 participants 55 years and older (mean age 63 years, 52.9% women) of the Framingham Heart Study (FHS) Offspring cohort. We conducted regression analysis and machine learning models, including LASSO-based Cox proportional hazard regression model (LASSO) and generalized boosted regression model (GBM), to identify protein prognostic markers. These markers were used to construct a weighted proteomic composite score, the AD prediction performance of which was assessed using time-dependent area under the curve (AUC). The association between the composite score and memory domain was examined in 339 (of the 858) participants with available memory scores, and in an independent group of 430 participants younger than 55 years (mean age 46, 56.7% women). RESULTS: Over a mean follow-up of 20 years, 132 (15.4%) participants developed AD. After adjusting for baseline age, sex, education, and APOE ε4+ status, regression models identified 309 proteins ( ≤ 0.2). After applying machine learning methods, nine of these proteins were selected to develop a composite score. This score improved AD prediction beyond the factors of age, sex, education, and APOE ε4+ status across 15 to 25 years of follow-up, achieving its peak AUC of 0.84 in the LASSO model at the 22-year follow-up. It also showed a consistent negative association with memory scores in 339 participants (beta = -0.061, = 0.046), 430 independent participants (beta = -0.060, = 0.018), and the pooled 769 samples (beta = -0.058, = 0.003). CONCLUSION: These findings highlight the utility of proteomic markers in improving AD prediction and emphasize the complex pathology of AD. The composite score may aid early AD detection and efficacy monitoring, warranting further validation in diverse populations.

摘要

背景:蛋白质丰度水平对生理变化和外部干预均敏感,有助于评估阿尔茨海默病(AD)风险及治疗效果。然而,由于蛋白质组学数据的高维度性和内在相关性,识别AD的蛋白质组学预后标志物具有挑战性。 方法:我们的研究分析了来自弗雷明汉心脏研究(FHS)子代队列中858名55岁及以上(平均年龄63岁,女性占52.9%)参与者的1128种血浆蛋白质,这些蛋白质通过SOMAscan平台进行测量。我们进行了回归分析和机器学习模型,包括基于套索(LASSO)的Cox比例风险回归模型(LASSO)和广义增强回归模型(GBM),以识别蛋白质预后标志物。这些标志物用于构建加权蛋白质组综合评分,其AD预测性能使用时间依赖曲线下面积(AUC)进行评估。在858名中有可用记忆评分的339名参与者以及一个由430名年龄小于55岁(平均年龄46岁,女性占56.7%)的独立组中,研究了综合评分与记忆领域之间的关联。 结果:在平均20年的随访中,132名(15.4%)参与者患上了AD。在调整基线年龄、性别、教育程度和APOE ε4+状态后,回归模型识别出309种蛋白质(≤0.2)。应用机器学习方法后,从这些蛋白质中选择了9种来制定综合评分。在15至25年的随访中,该评分在年龄、性别、教育程度和APOE ε4+状态等因素之外改善了AD预测,在22年随访时,LASSO模型中的AUC峰值达到0.84。在339名参与者(β=-0.061,P=0.046)、430名独立参与者(β=-0.060,P=0.018)以及合并的769个样本(β=-0.058,P=0.003)中,它还与记忆评分呈现出一致的负相关。 结论:这些发现突出了蛋白质组学标志物在改善AD预测方面的作用,并强调了AD复杂的病理学特征。综合评分可能有助于AD的早期检测和疗效监测,值得在不同人群中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/7ae43a55500c/nihpp-2024.09.21.24314123v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/e6a27f94d412/nihpp-2024.09.21.24314123v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/98ff0d3596e5/nihpp-2024.09.21.24314123v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/9fcad1f09ae2/nihpp-2024.09.21.24314123v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/4ad297a4fc5c/nihpp-2024.09.21.24314123v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/18d7bc340ee5/nihpp-2024.09.21.24314123v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/7ae43a55500c/nihpp-2024.09.21.24314123v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/e6a27f94d412/nihpp-2024.09.21.24314123v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/98ff0d3596e5/nihpp-2024.09.21.24314123v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/9fcad1f09ae2/nihpp-2024.09.21.24314123v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/4ad297a4fc5c/nihpp-2024.09.21.24314123v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/18d7bc340ee5/nihpp-2024.09.21.24314123v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35fb/11469405/7ae43a55500c/nihpp-2024.09.21.24314123v1-f0006.jpg

相似文献

[1]
Identifying Proteomic Prognostic Markers for Alzheimer's Disease with Survival Machine Learning: the Framingham Heart Study.

medRxiv. 2024-9-23

[2]
Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study.

J Prev Alzheimers Dis. 2025-2

[3]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[4]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2017-12-22

[6]
Selegiline for Alzheimer's disease.

Cochrane Database Syst Rev. 2003

[7]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[8]
18F PET with florbetapir for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2017-11-22

[9]
CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI).

Cochrane Database Syst Rev. 2017-3-22

[10]
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

Health Technol Assess. 2007-11

本文引用的文献

[1]
Sex-specific blood biomarkers linked to memory changes in middle-aged adults: The Framingham Heart Study.

Alzheimers Dement (Amst). 2024-3-27

[2]
Plasma proteomic profiles predict future dementia in healthy adults.

Nat Aging. 2024-2

[3]
Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease.

Transl Neurodegener. 2024-1-9

[4]
Maximizing utility of neuropsychological measures in sex-specific predictive models of incident Alzheimer's disease in the Framingham Heart Study.

Alzheimers Dement. 2024-2

[5]
Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk.

Nat Aging. 2021-5

[6]
Roles of Siglecs in neurodegenerative diseases.

Mol Aspects Med. 2023-4

[7]
Perspectives and challenges in patient stratification in Alzheimer's disease.

Alzheimers Res Ther. 2022-8-13

[8]
Reduced HGF/MET Signaling May Contribute to the Synaptic Pathology in an Alzheimer's Disease Mouse Model.

Front Aging Neurosci. 2022-7-12

[9]
Identification of Serum Biomarkers in Patients with Alzheimer's Disease by 2D-DIGE Proteomics.

Gerontology. 2022

[10]
Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019.

Lancet Public Health. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索