Suppr超能文献

解码肥胖和胰岛素抵抗中的内脏脂肪组织分子特征:一种多组学方法。

Decoding visceral adipose tissue molecular signatures in obesity and insulin resistance: a multi-omics approach.

机构信息

Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Patna, India.

Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India.

出版信息

Obesity (Silver Spring). 2024 Nov;32(11):2149-2160. doi: 10.1002/oby.24146. Epub 2024 Oct 13.

Abstract

OBJECTIVE

Obesity-associated insulin resistance (IR) is responsible for considerable morbidity and mortality globally. Despite vast genomic data, many areas, from pathogenesis to management, still have significant knowledge gaps. We aimed to characterize visceral adipose tissue (VAT) in obesity and IR through a multi-omics approach.

METHODS

We procured data on VAT samples from the Gene Expression Omnibus (GEO) for the following two groups: 1) populations with obesity (n = 34) versus those without (n = 26); and 2) populations with obesity and IR (n = 15) versus those with obesity but without IR (n = 15). Gene set enrichment, protein-protein interaction network construction, hub gene identification, and drug-gene interactions were performed, followed by regulatory network prediction involving transcription factors (TFs) and microRNAs (miRNAs).

RESULTS

Interleukin signaling pathways, cellular differentiation, and regulation of immune response revealed a significant cross talk between VAT and the immune system. Other findings include cancer pathways, neurotrophin signaling, and aging. A total of 10 hub genes, i.e., STAT1, KLF4, DUSP1, EGR1, FOS, JUN, IL2, IL6, MMP9, and FGF9, 24 TFs, and approved hub gene-targeting drugs were obtained. A total of 10 targeting miRNAs (e.g., hsa-miR-155-5p, hsa-miR-34a-5p) were associated with obesity and IR-related pathways.

CONCLUSIONS

Our multi-omics integration method revealed hub genes, TFs, and miRNAs that can be potential targets for investigation in VAT-related inflammatory processes and IR, therapeutic management, and risk stratifications.

摘要

目的

肥胖相关的胰岛素抵抗(IR)在全球范围内导致了相当大的发病率和死亡率。尽管有大量的基因组数据,但从发病机制到管理等许多领域仍然存在重大的知识空白。我们旨在通过多组学方法来描述肥胖和 IR 中的内脏脂肪组织(VAT)。

方法

我们从基因表达综合数据库(GEO)中获取了 VAT 样本的数据,用于以下两组人群:1)肥胖人群(n=34)与非肥胖人群(n=26);2)肥胖且 IR 人群(n=15)与肥胖但无 IR 人群(n=15)。进行了基因集富集、蛋白质-蛋白质相互作用网络构建、枢纽基因识别以及药物-基因相互作用分析,随后进行了涉及转录因子(TFs)和 microRNAs(miRNAs)的调控网络预测。

结果

白细胞介素信号通路、细胞分化和免疫反应调节显示 VAT 与免疫系统之间存在显著的相互作用。其他发现包括癌症通路、神经生长因子信号和衰老。总共获得了 10 个枢纽基因,即 STAT1、KLF4、DUSP1、EGR1、FOS、JUN、IL2、IL6、MMP9 和 FGF9,24 个 TF 和已批准的枢纽基因靶向药物。共有 10 个靶向 miRNA(例如 hsa-miR-155-5p、hsa-miR-34a-5p)与肥胖和 IR 相关途径有关。

结论

我们的多组学整合方法揭示了枢纽基因、TFs 和 miRNAs,它们可能是 VAT 相关炎症过程和 IR、治疗管理以及风险分层的潜在研究目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验