Sallam Moh, Göransson Lina, Larsen Anne, Alhamid Wael, Johnsson Martin, Wall Helena, de Koning Dirk-Jan, Gunnarsson Stefan
Department of Animal Biosciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences (SLU), Skara and Uppsala, Sweden.
Front Vet Sci. 2024 Sep 30;11:1432665. doi: 10.3389/fvets.2024.1432665. eCollection 2024.
Keel bone damage, include deviations and fractures, is common in both white and brown laying hens, regardless of the housing system. Radiography for assessing birds' keel bones is was proposed by previous studies. However, radiographs show only 2 out of 3 dimensions of the dissected keel bones. The current study aimed to (1) investigate the association of radiographic optical density (keel and tibiotarsal) and geometry (keel) with dissected keel bone pathology. Previous studies suggested that keel bone fractures may result from internal pressure exerted by pelvic cavity contents. The current study also aimed to (2) investigate the potential associations between pelvic dimensions and measures of keel bone damage. A sample of 200 laying hens on a commercial farm were radiographed at 16, 29, 42, 55, and 68 weeks, and culled at the end of the laying period (week 74). The birds were examined post-mortem for pelvic dimensions and underwent whole-body radiography, followed by keel and tibiotarsal bone dissection and radiography, and keel bone scoring. The radiographs were used to estimate radiographic optical density (keel and tibiotarsal bone) and keel bone geometry (ratio of keel bone length to mid-depth). The method for on-farm radiography of laying hens, including live bird restraint, positioning for live keel imaging, and post-imaging measurements, was developed, tested, and found to be reproducible. The radiographs (1,116 images of 168 birds) and the respective measurements and post-mortem scores of keel bones are also provided for further development of radiographic metrics relevant to keel bone damage. Some longitudinal radiographic measurements of keel geometry (ratio of length to mid-depth) and optical density (keel and tibiotarsal) showed associations with the damage (deviations/fractures) observed on the dissected keel bones. The associations of keel damage were clearer with the radiographic keel geometry than with keel and tibiotarsal optical density, also clearer for the keel deviations than for keel fractures. The higher radiography ratio of keel length to mid-depth at weeks 42, 55 and 68 of age, the larger deviations size observed on the dissected keels at age of 74 weeks. The higher the tibiotarsal radiographic optical density at week 55 of age, the lower deviations size and fractures count observed on the dissected keels at age of 74 weeks. Pelvic dimensions showed a positive correlation with body weight, but a larger pelvic cavity was associated with increased keel bone damage. These findings lay the foundations for future use of on-farm radiography in identifying appropriate phenotypes for genetic selection for keel bone health.
龙骨损伤,包括偏差和骨折,在白羽和褐羽蛋鸡中都很常见,与饲养系统无关。先前的研究提出了用放射成像评估鸡的龙骨。然而,放射影像仅显示解剖后的龙骨三维中的二维。本研究旨在:(1)探究放射影像光密度(龙骨和胫跗骨)及几何形状(龙骨)与解剖后的龙骨病理之间的关联。先前的研究表明,龙骨骨折可能是由盆腔内容物施加的内部压力导致的。本研究还旨在:(2)探究盆腔尺寸与龙骨损伤指标之间的潜在关联。对一家商业农场的200只蛋鸡样本在16、29、42、55和68周龄时进行放射成像,并在产蛋期结束时(74周龄)进行淘汰处理。对这些鸡进行死后盆腔尺寸检查,并进行全身放射成像,随后进行龙骨和胫跗骨解剖及放射成像,以及龙骨评分。放射影像用于估计放射影像光密度(龙骨和胫跗骨)以及龙骨几何形状(龙骨长度与中部深度之比)。开发、测试了蛋鸡农场放射成像方法,包括活禽约束、活体龙骨成像定位及成像后测量,发现该方法具有可重复性。还提供了放射影像(168只鸡的1116张图像)以及龙骨的相应测量值和死后评分,以进一步开发与龙骨损伤相关的放射测量指标。一些龙骨几何形状(长度与中部深度之比)和光密度(龙骨和胫跗骨)的纵向放射测量显示与解剖后的龙骨上观察到的损伤(偏差/骨折)有关联。龙骨损伤与放射影像龙骨几何形状的关联比与龙骨和胫跗骨光密度的关联更明显,龙骨偏差的关联比龙骨骨折的关联更明显。在42、55和68周龄时,龙骨长度与中部深度的放射影像比值越高,在74周龄时解剖后的龙骨上观察到的偏差尺寸越大。在55周龄时,胫跗骨放射影像光密度越高,在74周龄时解剖后的龙骨上观察到的偏差尺寸越小,骨折数量越少。盆腔尺寸与体重呈正相关,但盆腔越大,龙骨损伤增加。这些发现为未来在农场使用放射成像识别龙骨健康遗传选择的合适表型奠定了基础。