Suppr超能文献

人工智能在胆总管结石检测中的应用:一项系统综述

Artificial intelligence in the detection of choledocholithiasis: a systematic review.

作者信息

Blum Joshua, Wood Lewis, Turner Richard

机构信息

Department of General Surgery, Royal Hobart Hospital, Hobart, Tasmania, Australia; Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.

Department of Orthopaedic Surgery, Royal Hobart Hospital, Hobart, Tasmania, Australia.

出版信息

HPB (Oxford). 2025 Jan;27(1):1-9. doi: 10.1016/j.hpb.2024.09.009. Epub 2024 Sep 25.

Abstract

IMPORTANCE

Choledocholithiasis is a potentially life-threatening manifestation of acute biliary dysfunction (ABD) often requiring magnetic resonance cholangiopancreatography (MRCP) for diagnosis when standard investigation findings are inconclusive. Machine learning models (MLMs) may offer alternatives to diagnose choledocholithiasis.

OBJECTIVE

This systematic review seeks to evaluate the performance of MLMs in predicting choledocholithiasis and to compare this performance with the American Society of Gastrointestinal Endoscopy (ASGE) guidelines.

REVIEW

This review adhered to PRISMA guidelines. Four databases were searched for relevant records published between January 2000 and April 2024. Two researchers appraised records. MLM performance and ASGE guideline efficacy were compared, and the clinical utility of MLMs was assessed.

FINDINGS

408 records were screened; eight were eligible. Model accuracy ranged from 19 % to 97 %. Several records demonstrated a moderate-to-high risk of bias; of those featuring low risk of bias, peak accuracies ranged from 70 % to 85 %. Most MLMs outperformed ASGE guidelines. Important predictor variables included age, total bilirubin, and common bile duct diameter.

CONCLUSIONS

MLMs outperform ASGE guidelines in predicting choledocholithiasis. Nonetheless, biases in study design and reporting limit their prospective applicability. Current MLMs do not yet rival MRCP in detecting choledocholithiasis. Future guideline development should consider MLM-driven insights for better risk prediction.

摘要

重要性

胆总管结石是急性胆道功能障碍(ABD)的一种潜在危及生命的表现,当标准检查结果不明确时,通常需要磁共振胰胆管造影(MRCP)来进行诊断。机器学习模型(MLMs)可能为诊断胆总管结石提供替代方法。

目的

本系统评价旨在评估机器学习模型在预测胆总管结石方面的性能,并将该性能与美国胃肠内镜学会(ASGE)指南进行比较。

综述

本综述遵循PRISMA指南。检索了四个数据库,以查找2000年1月至2024年4月期间发表的相关记录。两名研究人员对记录进行了评估。比较了机器学习模型的性能和ASGE指南的有效性,并评估了机器学习模型的临床实用性。

结果

筛选了408条记录;8条符合条件。模型准确率在19%至97%之间。几条记录显示出中度至高度的偏倚风险;在那些偏倚风险较低的记录中,最高准确率在70%至85%之间。大多数机器学习模型的表现优于ASGE指南。重要的预测变量包括年龄、总胆红素和胆总管直径。

结论

在预测胆总管结石方面,机器学习模型的表现优于ASGE指南。尽管如此,研究设计和报告中的偏倚限制了它们的前瞻性适用性。目前的机器学习模型在检测胆总管结石方面还无法与MRCP相媲美。未来的指南制定应考虑机器学习模型驱动的见解,以实现更好的风险预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验