Perera Deshan, Li Evan, van der Meer Frank, Gill John, Church Deirdre L, Huber Christian D, van Marle Guido, Platt Alexander, Long Quan
Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
bioRxiv. 2024 Oct 12:2024.10.07.617101. doi: 10.1101/2024.10.07.617101.
Modern sequencing instruments bring unprecedented opportunity to study within-host viral evolution in conjunction with viral transmissions between hosts. However, no computational simulators are available to assist the characterization of within-host dynamics. This limits our ability to interpret epidemiological predictions incorporating within-host evolution and to validate computational inference tools. To fill this need we developed Apollo, a GPU-accelerated, out-of-core tool for within-host simulation of viral evolution and infection dynamics across population, tissue, and cellular levels. Apollo is scalable to hundreds of millions of viral genomes and can handle complex demographic and population genetic models. Apollo can replicate real within-host viral evolution; accurately recapturing observed viral sequences from an HIV cohort derived from initial population-genetic configurations. For practical applications, using Apollo-simulated viral genomes and transmission networks, we validated and uncovered the limitations of a widely used viral transmission inference tool.
现代测序仪器为研究宿主内病毒进化以及宿主间病毒传播带来了前所未有的机遇。然而,目前尚无计算模拟器可用于辅助描述宿主内动态变化。这限制了我们解释纳入宿主内进化的流行病学预测以及验证计算推理工具的能力。为满足这一需求,我们开发了Apollo,这是一种用于在群体、组织和细胞水平上模拟宿主内病毒进化和感染动态的GPU加速、核外工具。Apollo可扩展至数亿个病毒基因组,并能处理复杂的人口统计学和群体遗传模型。Apollo能够复制真实的宿主内病毒进化过程;从源自初始群体遗传配置的HIV队列中准确重现观察到的病毒序列。在实际应用中,我们使用Apollo模拟的病毒基因组和传播网络,验证并发现了一种广泛使用的病毒传播推理工具的局限性。