Sun Jiahao, Yan Minjia, Tao Guangdong, Su Runbin, Xiao Xuanming, Wu Qiangshun, Chen Feng, Wu Xi-Lin, Lin Hongjun
College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
Zhejiang Hisun Pharmaceutical Co., Ltd., Waisha Road No.46, Taizhou, China.
Water Res. 2025 Jan 1;268(Pt A):122627. doi: 10.1016/j.watres.2024.122627. Epub 2024 Oct 13.
Single-atom nanozymes possess high catalytic activity and selectivity, and are emerging as advanced heterogeneous catalysts for environmental applications. Herein, we present the innovative synthesis and characterization of a single-atom manganese-doped carbon nitride (SA-Mn-CN) nanozyme, integrated into a polyvinylidene fluoride (PVDF) membrane for advanced water treatment applications. The SA-Mn-CN nanozyme demonstrates high peroxidase-like activity, efficiently catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and generating reactive oxygen species (ROS) for effective antibacterial action. Notably, the SA-Mn-CN/PVDF membrane showcases enhanced water permeability, superior antifouling properties, and ultra-fast degradation kinetics of organic pollutants. Mechanistic studies reveal that the nanozyme selectively generates Mn(IV)-oxo species via peroxymonosulfate (PMS) activation, crucial for the efficient oxidation processes. Our integrated membrane system effectively removes (within 1 min, > 92 % removal) a variety of organic micropollutants in continuous-flow operations, demonstrating excellent stability and minimal manganese leaching. Compared to conventional advanced oxidation process (AOPs)/membrane system, the SA-Mn-CN/PVDF/PMS system holds the advantages of high catalytic activity and selectivity for generation of reactive species, wide working pH range (pH3-11) and excellent stability and reusability under the backwashing conditions. The developed device-scale AOPs/membrane system was proven to be effective in bacterial inactivation and pollutants degradation, verifying the vast application potential of the SA-Mn-CN/PVDF membrane for practical water decontamination. This work pioneers the development of enzyme-mimicking nanozyme membranes, offering a sustainable and high-performance solution for wastewater treatment, and sets a new benchmark for the design of nanozyme-based catalytic membranes in environmental applications.
单原子纳米酶具有高催化活性和选择性,正成为用于环境应用的先进多相催化剂。在此,我们展示了一种单原子锰掺杂氮化碳(SA-Mn-CN)纳米酶的创新合成与表征,该纳米酶集成到聚偏氟乙烯(PVDF)膜中用于先进的水处理应用。SA-Mn-CN纳米酶表现出高类过氧化物酶活性,能有效催化3,3',5,5'-四甲基联苯胺(TMB)的氧化,并产生活性氧(ROS)以实现有效的抗菌作用。值得注意的是,SA-Mn-CN/PVDF膜表现出增强的水渗透性、优异的抗污染性能以及有机污染物的超快降解动力学。机理研究表明,纳米酶通过过一硫酸盐(PMS)活化选择性地生成Mn(IV)-氧物种,这对高效氧化过程至关重要。我们的集成膜系统在连续流操作中能有效去除(1分钟内,去除率>92%)多种有机微污染物,显示出优异的稳定性和最小的锰浸出。与传统的高级氧化工艺(AOPs)/膜系统相比,SA-Mn-CN/PVDF/PMS系统具有生成活性物种的高催化活性和选择性、宽工作pH范围(pH3 - 11)以及在反冲洗条件下优异的稳定性和可重复使用性等优点。所开发的装置规模的AOPs/膜系统被证明在细菌灭活和污染物降解方面有效,验证了SA-Mn-CN/PVDF膜在实际水净化中的巨大应用潜力。这项工作开创了仿酶纳米酶膜的发展,为废水处理提供了一种可持续的高性能解决方案,并为环境应用中基于纳米酶的催化膜设计树立了新的标杆。
Nanomaterials (Basel). 2024-8-21
ACS Appl Mater Interfaces. 2025-8-6