Burkart Tom, Müller Benedikt J, Frey Erwin
Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, <a href="https://ror.org/05591te55">Ludwig-Maximilians-Universität München</a>, Theresienstraße 37, D-80333 München, Germany.
<a href="https://ror.org/01hhn8329">Max Planck School Matter to Life</a>, Hofgartenstraße 8, D-80539 München, Germany.
Phys Rev E. 2024 Sep;110(3-1):034412. doi: 10.1103/PhysRevE.110.034412.
Intracellular protein patterns regulate many vital cellular functions, such as the processing of spatiotemporal information or the control of shape deformations. To do so, pattern-forming systems can be sensitive to the cell geometry by means of coupling the protein dynamics on the cell membrane to dynamics in the cytosol. Recent studies demonstrated that modeling the cytosolic dynamics in terms of an averaged protein pool disregards possibly crucial aspects of the pattern formation, most importantly concentration gradients normal to the membrane. At the same time, the coupling of two domains (surface and volume) with different dimensions renders many standard tools for the numerical analysis of self-organizing systems inefficient. Here, we present a generic framework for projecting the cytosolic dynamics onto the lower-dimensional surface that respects the influence of cytosolic concentration gradients in static and evolving geometries. This method uses a priori physical information about the system to approximate the cytosolic dynamics by a small number of dominant characteristic concentration profiles (basis), akin to basis transformations of finite element methods. As a proof of concept, we apply our framework to a toy model for volume-dependent interrupted coarsening, evaluate the accuracy of the results for various basis choices, and discuss the optimal basis choice for biologically relevant systems. Our analysis presents an efficient yet accurate method for analyzing pattern formation with surface-volume coupling in evolving geometries.
细胞内蛋白质模式调节许多重要的细胞功能,如时空信息处理或形状变形控制。为此,模式形成系统可以通过将细胞膜上的蛋白质动力学与细胞质中的动力学耦合,对细胞几何形状敏感。最近的研究表明,用平均蛋白质库来模拟细胞质动力学忽略了模式形成中可能至关重要的方面,最重要的是垂直于膜的浓度梯度。同时,具有不同维度的两个域(表面和体积)的耦合使得许多用于自组织系统数值分析的标准工具效率低下。在这里,我们提出了一个通用框架,用于将细胞质动力学投影到低维表面上,该框架考虑了静态和动态几何形状中细胞质浓度梯度的影响。该方法利用关于系统的先验物理信息,通过少量主导特征浓度分布(基)来近似细胞质动力学,类似于有限元方法的基变换。作为概念验证,我们将我们的框架应用于一个与体积相关的间断粗化的玩具模型,评估各种基选择下结果的准确性,并讨论生物相关系统的最佳基选择。我们的分析提出了一种有效且准确的方法,用于分析动态几何形状中具有表面 - 体积耦合的模式形成。