Kasaian Kiarash, Mazaheri Mahdi, Sandoghdar Vahid
Max Planck Institute for the Science of Light, 91058 Erlangen, Germany.
Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany.
ACS Nano. 2024 Nov 5;18(44):30463-30472. doi: 10.1021/acsnano.4c08435. Epub 2024 Oct 21.
Tracking nanoparticle movement is highly desirable in many scientific areas, and various imaging methods have been employed to achieve this goal. Interferometric scattering (iSCAT) microscopy has been particularly successful in combining very high spatial and temporal resolution for tracking small nanoparticles in all three dimensions. However, previous works have been limited to an axial range of only a few hundred nanometers. Here, we present a robust and efficient measurement and analysis strategy for three-dimensional tracking of nanoparticles at high speed and with nanometer precision. After discussing the principle of our approach using synthetic data, we showcase the performance of the method by tracking gold nanoparticles with diameters ranging from 10 to 80 nm in water, demonstrating an axial tracking range from 4 μm for the smallest particles up to over 30 μm for the larger ones. We point out the limitations and robustness of our system across various noise levels and discuss its promise for applications in cell biology and material science, where the three-dimensional motion of nanoparticles in complex media is of interest.
在许多科学领域,追踪纳米颗粒的运动非常重要,人们已经采用了各种成像方法来实现这一目标。干涉散射(iSCAT)显微镜在结合非常高的空间和时间分辨率以在三维空间中追踪小纳米颗粒方面尤其成功。然而,先前的研究仅限于仅几百纳米的轴向范围。在此,我们提出了一种强大且高效的测量和分析策略,用于以高速和纳米精度对纳米颗粒进行三维追踪。在使用合成数据讨论了我们方法的原理之后,我们通过追踪水中直径从10到80纳米的金纳米颗粒展示了该方法的性能,表明最小颗粒的轴向追踪范围为4微米,较大颗粒的轴向追踪范围超过30微米。我们指出了我们系统在各种噪声水平下的局限性和稳健性,并讨论了其在细胞生物学和材料科学中的应用前景,在这些领域中,复杂介质中纳米颗粒的三维运动备受关注。