Suppr超能文献

发现喹唑啉-苯并噻唑衍生物作为新型强效蛋白酶激活受体 4 拮抗剂,具有改善的药代动力学和低出血风险。

Discovery of quinazoline-benzothiazole derivatives as novel potent protease-activated receptor 4 antagonists with improved pharmacokinetics and low bleeding liability.

机构信息

School of Engineering China Pharmaceutical University, Nanjing, 210009, PR China.

Faculty of Medicine, Dalian University of Technology, Dalian, 116081, PR China.

出版信息

Eur J Med Chem. 2024 Dec 15;280:116980. doi: 10.1016/j.ejmech.2024.116980. Epub 2024 Oct 18.

Abstract

Protease-activated receptor 4 (PAR4) plays a critical role in the development of pathological thrombosis, and targeting PAR4 is considered a promising strategy for improving antiplatelet therapies. Here, we reported the design of a series of quinazoline-benzothiazole-based PAR4 antagonists using a scaffold-hopping strategy. Systematic structure-activity relationship exploration leads to the discovery of compounds 20f and 20g, which displayed optimal activity (h. PAR4-AP PRP IC = 6.39 nM and 3.45 nM, respectively) on human platelets and high selectivity for PAR4. Both of them also showed excellent metabolic stability in human liver microsomes (compound 20f, T = 249.83 min, compound 20g, T = 282.60 min) and favourable PK profiles in rats (compound 20f, T = 5.16 h, F = 50.5 %, compound 20g, T = 7.05 h, F = 27.3 %). More importantly, neither compound prolonged the bleeding time in the mouse tail-cutting model (10 mg/kg, p.o.). These results suggest that these compounds have great potential for use in antiplatelet therapies.

摘要

蛋白酶激活受体 4(PAR4)在病理性血栓形成的发展中起着关键作用,靶向 PAR4 被认为是改善抗血小板治疗的有前途的策略。在这里,我们报告了使用支架跳跃策略设计的一系列基于喹唑啉-苯并噻唑的 PAR4 拮抗剂。系统的构效关系研究导致发现了化合物 20f 和 20g,它们在人血小板上显示出最佳的活性(h.PAR4-AP PRP IC = 6.39 nM 和 3.45 nM,分别)和对 PAR4 的高选择性。它们在人肝微粒体中也表现出优异的代谢稳定性(化合物 20f,T = 249.83 min,化合物 20g,T = 282.60 min)和在大鼠中的良好 PK 特征(化合物 20f,T = 5.16 h,F = 50.5%,化合物 20g,T = 7.05 h,F = 27.3%)。更重要的是,两种化合物在小鼠断尾模型中均未延长出血时间(10 mg/kg,po)。这些结果表明,这些化合物在抗血小板治疗中有很大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验