Suppr超能文献

早期非ST段抬高型心肌梗死的机器学习诊断模型:利用高敏心肌肌钙蛋白I 1/2小时变化及多种心血管生物标志物

Machine Learning Diagnostic Model for Early Stage NSTEMI: Using hs-cTnI 1/2h Changes and Multiple Cardiovascular Biomarkers.

作者信息

Wu Junyi, Ge Yilin, Chen Ke, Chen Siyu, Yang Jiashu, Yuan Hui

机构信息

Department of Clinical Laboratory in Beijing Anzhen Hospital, Affiliated Hospital of Capital Medical University, Beijing 100029, China.

出版信息

Diagnostics (Basel). 2024 Oct 18;14(20):2322. doi: 10.3390/diagnostics14202322.

Abstract

BACKGROUND

This study demonstrates differences in the distribution of multiple cardiovascular biomarkers between non-ST-segment elevation myocardial infarction (NSTEMI) and unstable angina (UA) patients. Diagnostic machine learning predictive models measured at the time of admission and 1/2 h post-admission, achieving competitive diagnostic predictive results.

OBJECTIVE

This study aims to explore the diagnostic value of changes in high-sensitivity cardiac troponin I (hs-cTnI) levels in patients with suspected NSTEMI.

METHODS

A total of 267 patients presented with chest pain, requiring confirmation of acute coronary syndrome (ACS) subtypes (NSTEMI vs. UA). Hs-cTnI and other cardiac markers, such as creatine kinase-MB (CK-MB) and Myoglobin (Myo), were analyzed. Machine learning techniques were employed to assess the application of hs-cTnI level changes in the clinical diagnosis of NSTEMI.

RESULTS

Levels of CK-MB, Myo, hs-cTnI measured at admission, hs-cTnI measured 1-2 h after admission, and NT-proBNP in NSTEMI patients were significantly higher than those in UA patients ( < 0.001). There was a positive correlation between hs-cTnI and CK-MB, as well as Myo (R = 0.72, R = 0.51, R = 0.60). The optimal diagnostic model, Hybiome_1/2h, demonstrated an F1-Score of 0.74, an AUROC of 0.96, and an AP of 0.89.

CONCLUSIONS

This study confirms the significant value of hs-cTnI as a sensitive marker of myocardial injury in the diagnosis of NSTEMI. Continuous monitoring of hs-cTnI levels enhances the accuracy of distinguishing NSTEMI from UA. The models indicate that the Hybiome hs-cTnI assays perform comparably well to the Beckman assays in predicting NSTEMI. Moreover, incorporating hs-cTnI measurements taken 1-2 h post-admission significantly enhances the model's effectiveness.

摘要

背景

本研究显示了非ST段抬高型心肌梗死(NSTEMI)和不稳定型心绞痛(UA)患者多种心血管生物标志物分布的差异。在入院时和入院后1/2小时测量的诊断机器学习预测模型,取得了具有竞争力的诊断预测结果。

目的

本研究旨在探讨高敏心肌肌钙蛋白I(hs-cTnI)水平变化对疑似NSTEMI患者的诊断价值。

方法

共有267例胸痛患者,需要确诊急性冠状动脉综合征(ACS)亚型(NSTEMI与UA)。分析了hs-cTnI和其他心脏标志物,如肌酸激酶同工酶(CK-MB)和肌红蛋白(Myo)。采用机器学习技术评估hs-cTnI水平变化在NSTEMI临床诊断中的应用。

结果

NSTEMI患者入院时测量的CK-MB、Myo、hs-cTnI水平,入院后1-2小时测量的hs-cTnI水平,以及N末端B型利钠肽原(NT-proBNP)均显著高于UA患者(<0.001)。hs-cTnI与CK-MB以及Myo之间存在正相关(R=0.72,R=0.51,R=0.60)。最佳诊断模型Hybiome_1/2h的F1分数为0.74,曲线下面积(AUROC)为0.96,平均精度(AP)为0.89。

结论

本研究证实了hs-cTnI作为心肌损伤敏感标志物在NSTEMI诊断中的重要价值。持续监测hs-cTnI水平可提高区分NSTEMI与UA的准确性。模型表明,Hybiome hs-cTnI检测在预测NSTEMI方面与贝克曼检测表现相当。此外,纳入入院后1-2小时的hs-cTnI测量值可显著提高模型的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff52/11506866/3dcefb21cbc5/diagnostics-14-02322-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验