Gortat Izabela, Chruściel Jerzy J, Marszałek Joanna, Żyłła Renata, Wawrzyniak Paweł
Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland.
Łukasiewicz Research Network-Lodz Institute of Technology, Circular Economy Center (BCG), Brzezińska 5/15, 92-103 Łódź, Poland.
Membranes (Basel). 2024 Oct 7;14(10):213. doi: 10.3390/membranes14100213.
Composite polymer membranes were obtained using the so-called dry phase inversion and were used for desalination of diluted saline water solutions by pervaporation (PV) method. The tests used a two-layer backing, porous, ultrafiltration commercial membrane (PS20), which consisted of a supporting polyester layer and an active polysulfone layer. The active layer of PV membranes was obtained in an aqueous environment, in the presence of a surfactant, by cross-linking a 5 wt.% aqueous solution of polyvinyl alcohol (PVA)-using various amounts of cross-linking substances: 50 wt.% aqueous solutions of glutaraldehyde (GA) or citric acid (CA) or a 40 wt.% aqueous solution of glyoxal. An ethylene glycol oligomer (PEG 200) was also used to prepare active layers on PV membranes. Witch its help a chemically cross-linked hydrogel with PVA and cross-linking reagents (CA or GA) was formed and used as an active layer. The manufactured PV membranes (PVA/PSf/PES) were used in the desalination of water with a salinity of 35‱, which corresponds to the average salinity of oceans. The pervaporation method was used to examine the efficiency (productivity and selectivity) of the desalination process. The PV was carried at a temperature of 60 °C and a feed flow rate of 60 dm/h while the membrane area was 0.005 m. The following characteristic parameters of the membranes were determined: thickness, hydrophilicity (based on contact angle measurements), density, degree of swelling and cross-linking density and compared with the analogous properties of the initial PS20 backing membrane. The physical microstructure of the cross-section of the membranes was analyzed using scanning electron microscopy (SEM) method.
采用所谓的干相转化法制备了复合聚合物膜,并将其用于通过渗透汽化(PV)法对稀盐水溶液进行脱盐处理。测试使用了一种两层的、多孔的、商业化超滤膜(PS20)作为支撑层,该膜由聚酯支撑层和活性聚砜层组成。在水性环境中,在表面活性剂存在的情况下,通过使用不同量的交联剂:50 wt.% 的戊二醛(GA)或柠檬酸(CA)水溶液,或40 wt.% 的乙二醛水溶液,对5 wt.% 的聚乙烯醇(PVA)水溶液进行交联,从而获得PV膜的活性层。还使用了乙二醇低聚物(PEG 200)来制备PV膜的活性层。在其帮助下,形成了与PVA和交联剂(CA或GA)化学交联的水凝胶,并用作活性层。所制备的PV膜(PVA/PSf/PES)用于盐度为35‱ 的水的脱盐处理,这与海洋的平均盐度相对应。采用渗透汽化法来考察脱盐过程的效率(生产率和选择性)。PV过程在60 °C 的温度、60 dm/h 的进料流速下进行,膜面积为0.005 m²。测定了膜的以下特性参数:厚度、亲水性(基于接触角测量)、密度、溶胀度和交联密度,并与初始PS20支撑膜的类似性能进行了比较。使用扫描电子显微镜(SEM)方法分析了膜横截面的物理微观结构。