Suppr超能文献

通过NH吸附和解吸实现铁电体SnS电学性质的可逆调控

Reversible Tuning Electrical Properties in Ferroelectric SnS with NH Adsorption and Desorption.

作者信息

Wang Wanqian, Luo Wei, Zhang Sen, Zeng Chayuan, Xie Fei, Deng Chuyun, Wang Guang, Peng Gang

机构信息

College of Science, National University of Defense Technology, Changsha 410073, China.

出版信息

Nanomaterials (Basel). 2024 Oct 12;14(20):1638. doi: 10.3390/nano14201638.

Abstract

Two-dimensional (2D) ferroelectrics usually exhibit instability or a tendency toward degradation when exposed to the ambient atmosphere, and the mechanism behind this phenomenon remains unclear. To unravel this affection mechanism, we have undertaken an investigation utilizing NH and two-dimensional ferroelectric SnS. Herein, the adsorption and desorption of NH molecules can reversibly modulate the electrical properties of SnS, encompassing I-V curves and transfer curves. The response time for NH adsorption is approximately 1.12 s, which is much quicker than that observed in other two-dimensional materials. KPFM characterizations indicate that air molecules' adsorption alters the surface potentials of SiO, SnS, metal electrodes, and contacts with minimal impact on the electrode contact surface potential. Upon the adsorption of NH molecules or air molecules, the hole concentration within the device decreases. These findings elucidate the adsorption mechanism of NH molecules on SnS, potentially fostering the advancement of rapid gas sensing applications utilizing two-dimensional ferroelectrics.

摘要

二维(2D)铁电体在暴露于环境大气时通常会表现出不稳定性或降解趋势,而这一现象背后的机制仍不清楚。为了揭示这种影响机制,我们利用NH和二维铁电体SnS进行了一项研究。在此,NH分子的吸附和解吸可以可逆地调节SnS的电学性质,包括I-V曲线和转移曲线。NH吸附的响应时间约为1.12秒,这比在其他二维材料中观察到的要快得多。KPFM表征表明,空气分子的吸附改变了SiO、SnS、金属电极的表面电位以及接触,对电极接触表面电位的影响最小。在吸附NH分子或空气分子后,器件内的空穴浓度降低。这些发现阐明了NH分子在SnS上的吸附机制,有望推动利用二维铁电体的快速气体传感应用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/11510606/b173d3ac338b/nanomaterials-14-01638-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验