Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA.
Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany.
Curr Opin Struct Biol. 2024 Dec;89:102936. doi: 10.1016/j.sbi.2024.102936. Epub 2024 Oct 24.
Membrane proteins remain challenging targets for conventional structural biology techniques because they need to reside within complex hydrophobic lipid environments to maintain proper structure and function. Magnetic resonance combined with site-directed spin labeling is an alternative method that provides atomic-level structural and dynamical information from effects introduced by an electron- or nuclear-based spin label. With the advent of bioorthogonal click chemistries and genetically engineered non-canonical amino acids (ncAAs), options for linking spin probes to biomolecules have substantially broadened outside the conventional cysteine-based labeling scheme. Here, we highlight current strategies to spin-label membrane proteins through ncAAs for nuclear and electron paramagnetic resonance applications. Such advances are critical for developing bioorthogonal spin labeling schemes to achieve in-cell labeling and in-cell measurements of membrane protein conformational dynamics.
膜蛋白仍然是传统结构生物学技术的挑战性目标,因为它们需要存在于复杂的疏水性脂质环境中,以维持适当的结构和功能。磁共振与定点自旋标记相结合是一种替代方法,它可以通过电子或核自旋标记引入的效应提供原子水平的结构和动力学信息。随着生物正交点击化学和基因工程非天然氨基酸(ncAAs)的出现,将自旋探针与生物分子连接的选择已经大大扩展了传统半胱氨酸标记方案之外。在这里,我们重点介绍了通过 ncAAs 对膜蛋白进行自旋标记的当前策略,用于核和电子顺磁共振应用。这些进展对于开发生物正交自旋标记方案以实现膜蛋白构象动力学的细胞内标记和细胞内测量至关重要。