Choi Lak-Yeong, Daniel Kehinde Favour, Lee Se-Yeon, Lee Chae-Rin, Park Ji-Yeon, Park Jinseon, Hong Se-Woon
Department of Rural and Bio-Systems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea.
Education and Research Unit for Climate-Smart Reclaimed-Tideland Agriculture (BK21 Four), Chonnam National University, Gwangju 61186, Republic of Korea.
Animals (Basel). 2024 Oct 18;14(20):3019. doi: 10.3390/ani14203019.
Maintaining the optimal microclimate in broiler houses is crucial for bird productivity, yet enabling efficient temperature control remains a significant challenge. This study developed and validated a computational fluid dynamics (CFD) model to predict temporal changes in indoor air temperature in response to variable ventilation operations in a commercial broiler house. The model accurately simulated air velocity and airflow distribution for different numbers of tunnel fans in operation, with air-velocity errors ranging from -0.22 to 0.32 m s. The predicted airflow rates through inlets and cooling pads showed good agreement with measured values with an accuracy of up to 108.1%. Additionally, the CFD model effectively predicted temperature dynamics, accounting for chicken heat production and ventilation effect. The model successfully predicted the longitudinal temperature gradients and their variations during ventilation cycles, validating its reliability through comparison with experimental data. This study also explored different variable inlet configurations to mitigate the temperature gradient. The variable inlet adjustment showed the potential to relieve the high temperatures but may reduce overall ventilation efficiency or intensify temperature gradients, which confirms the importance of optimising ventilation strategies. This CFD model provides a valuable tool for evaluating and improving ventilation systems and contributes to enhanced indoor microclimates and productivity in poultry houses.
维持肉鸡舍内的最佳微气候对于鸡的生产性能至关重要,但实现高效的温度控制仍然是一项重大挑战。本研究开发并验证了一种计算流体动力学(CFD)模型,以预测商业肉鸡舍中因可变通风操作而导致的室内空气温度的时间变化。该模型准确模拟了不同数量的隧道风扇运行时的空气流速和气流分布,空气流速误差范围为-0.22至0.32米/秒。通过进风口和冷却垫的预测气流速率与测量值显示出良好的一致性,准确率高达108.1%。此外,CFD模型有效地预测了温度动态,考虑了鸡的产热和通风效果。该模型成功预测了通风周期内的纵向温度梯度及其变化,并通过与实验数据比较验证了其可靠性。本研究还探索了不同的可变进风口配置以减轻温度梯度。可变进风口调节显示出缓解高温的潜力,但可能会降低整体通风效率或加剧温度梯度,这证实了优化通风策略的重要性。这种CFD模型为评估和改进通风系统提供了一个有价值的工具,并有助于改善家禽舍内的微气候和提高生产性能。