Paddison Joseph A M, Cliffe Matthew J
Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
School of Chemistry, University Park, Nottingham, NG7 2RD, United Kingdom.
ACS Cent Sci. 2024 Sep 11;10(10):1821-1828. doi: 10.1021/acscentsci.4c01020. eCollection 2024 Oct 23.
Spin liquids are a paradigmatic example of a nontrivial state of matter. The search for new spin liquids is a key interdisciplinary challenge. Geometrical frustration-where the geometry of the net that the spins occupy precludes the generation of a simple ordered state-is a particularly fruitful way to generate these intrinsically disordered states. Prior focus has been on a handful of high symmetry nets. There are, however, many three-dimensional nets, each of which has the potential to form unique states. In this paper, we investigate the high symmetry nets-those which are both vertex- and edge-transitive-for the simplest possible interaction sets: nearest-neighbor couplings of antiferromagnetic Heisenberg and Ising spins. While the well-known (pyrochlore) net is the only nearest-neighbor Heisenberg antiferromagnet which does not order, we identify two new frustrated nets ( and ) possessing finite temperature Heisenberg spin-liquid states with strongly suppressed magnetic ordering and noncollinear ground states. With Ising spins, we identify three new classical spin liquids that do not order down to / = 0.01. We highlight materials that contain these high symmetry nets, and which could, if substituted with appropriate magnetic ions, potentially host these unusual states. Our systematic survey will guide searches for novel magnetic phases.
自旋液体是一种非平凡物质状态的典型例子。寻找新的自旋液体是一个关键的跨学科挑战。几何阻挫——即自旋所占据的晶格几何结构阻碍了简单有序态的产生——是产生这些内在无序态的一种特别有效的方式。此前的研究重点一直集中在少数几种高对称性晶格上。然而,存在许多三维晶格,其中每一种都有可能形成独特的状态。在本文中,我们针对最简单的相互作用集,即反铁磁海森堡和伊辛自旋的最近邻耦合,研究了高对称性晶格——那些既是顶点传递又是边传递的晶格。虽然众所周知的(烧绿石)晶格是唯一一种不发生有序化的最近邻海森堡反铁磁体,但我们识别出了两种新的阻挫晶格(和),它们具有有限温度的海森堡自旋液体态,其磁有序被强烈抑制且基态为非共线态。对于伊辛自旋,我们识别出了三种新的经典自旋液体,它们在降至/ = 0.01时仍不发生有序化。我们强调了包含这些高对称性晶格的材料,如果用适当的磁性离子进行替代,这些材料有可能容纳这些不寻常的状态。我们的系统研究将指导对新型磁相的探索。