Suppr超能文献

碳离子辐照下瞬发伽马成像的首次实验验证。

First experimental verification of prompt gamma imaging with carbon ion irradiation.

作者信息

Idrissi Aicha Bourkadi, Borghi Giacomo, Caracciolo Anita, Riboldi Christian, Carminati Marco, Donetti Marco, Pullia Marco, Savazzi Simone, Camera Franco, Fiorini Carlo

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, 20133, Milan, Italy.

Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133, Milan, Italy.

出版信息

Sci Rep. 2024 Oct 28;14(1):25750. doi: 10.1038/s41598-024-72870-6.

Abstract

Prompt Gamma Imaging (PGI) is a promising technique for range verification in Particle Therapy. This technique was already tested in clinical environment with a knife-edge-collimator camera for proton treatments but remains relatively unexplored for Carbon Ion Radiation Therapy (CIRT). Previous FLUKA simulations suggested that PG profile shifts could be detected in CIRT with a precision of ∼ 4 mm ([Formula: see text]) for a particle statistic equal to [Formula: see text] C-ions using a 10 × 10 cm camera. An experimental campaign was carried out at CNAO (Pavia, Italy) to verify these results, using a knife-edge-collimator camera prototype based on a 5 × 5 cm pixelated LYSO crystal. PG profiles were measured irradiating a plastic phantom with a C-ion pencil beam at clinical energies and intensities, also moving the detector to extend the FOV to 13 × 5 cm. The prototype detected Bragg-peak shifts with ∼ 4 mm precision for a statistic of [Formula: see text] C-ions ([Formula: see text] for the extended FOV), slightly larger than expected. Nevertheless, the detector demonstrated significant potential for verifying the precision in dose delivery following a treatment fraction, which remains fundamental in the clinical environment. For the first time to our knowledge, range verification based on PGI was applied to a C-ion beam at clinical energy and intensities.

摘要

Prompt伽马成像(PGI)是一种在粒子治疗中进行射程验证的有前景的技术。该技术已在临床环境中使用刀边准直器相机对质子治疗进行了测试,但对于碳离子放射治疗(CIRT)仍相对未被充分探索。先前的FLUKA模拟表明,使用10×10 cm相机,对于等于[公式:见原文] C离子的粒子统计量,在CIRT中可以检测到PG轮廓偏移,精度约为4 mm([公式:见原文])。在意大利帕维亚的CNAO开展了一项实验活动,以验证这些结果,使用基于5×5 cm像素化LYSO晶体的刀边准直器相机原型。在临床能量和强度下,用碳离子笔形束照射塑料模体来测量PG轮廓,还移动探测器将视野扩展到13×5 cm。对于[公式:见原文] C离子的统计量(扩展视野时为[公式:见原文]),该原型以约4 mm的精度检测到布拉格峰偏移,略大于预期。然而,该探测器显示出在验证治疗分次后剂量输送精度方面的巨大潜力,这在临床环境中仍然至关重要。据我们所知,基于PGI的射程验证首次应用于临床能量和强度的碳离子束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64a9/11519489/9a8a6e5bd325/41598_2024_72870_Fig1_HTML.jpg

相似文献

1
First experimental verification of prompt gamma imaging with carbon ion irradiation.
Sci Rep. 2024 Oct 28;14(1):25750. doi: 10.1038/s41598-024-72870-6.
2
3
Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters.
Phys Med Biol. 2015 Aug 7;60(15):6063-85. doi: 10.1088/0031-9155/60/15/6063. Epub 2015 Jul 28.
5
Prompt gamma imaging of proton pencil beams at clinical dose rate.
Phys Med Biol. 2014 Oct 7;59(19):5849-71. doi: 10.1088/0031-9155/59/19/5849. Epub 2014 Sep 10.
6
Carbon-11 and Carbon-12 beam range verifications through prompt gamma and annihilation gamma measurements: Monte Carlo simulations.
Biomed Phys Eng Express. 2020 Nov;6(6). doi: 10.1088/2057-1976/abb8b6. Epub 2020 Sep 29.
7
A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy.
Phys Med Biol. 2018 Sep 17;63(18):185019. doi: 10.1088/1361-6560/aad513.
8
Secondary radiation measurements for particle therapy applications: prompt photons produced by He, C and O ion beams in a PMMA target.
Phys Med Biol. 2017 Feb 21;62(4):1438-1455. doi: 10.1088/1361-6560/62/4/1438. Epub 2017 Jan 23.
9
Nuclear Fragmentation Imaging for Carbon-Ion Radiation Therapy Monitoring: an In Silico Study.
Int J Part Ther. 2021 Sep 1;8(4):25-36. doi: 10.14338/IJPT-20-00040.1. eCollection 2022 Spring.
10
Range shift verification in spot scanning proton therapy using gamma electron vertex imaging.
Med Phys. 2024 Mar;51(3):1985-1996. doi: 10.1002/mp.16739. Epub 2023 Sep 18.

本文引用的文献

1
An in-vivo treatment monitoring system for ion-beam radiotherapy based on 28 Timepix3 detectors.
Sci Rep. 2024 Jul 4;14(1):15452. doi: 10.1038/s41598-024-66266-9.
3
Detectability of Anatomical Changes With Prompt-Gamma Imaging: First Systematic Evaluation of Clinical Application During Prostate-Cancer Proton Therapy.
Int J Radiat Oncol Biol Phys. 2023 Nov 1;117(3):718-729. doi: 10.1016/j.ijrobp.2023.05.002. Epub 2023 May 7.
5
Particle Therapy: Clinical Applications and Biological Effects.
Life (Basel). 2022 Dec 9;12(12):2071. doi: 10.3390/life12122071.
6
Experience and new prospects of PET imaging for ion beam therapy monitoring.
Z Med Phys. 2023 Feb;33(1):22-34. doi: 10.1016/j.zemedi.2022.11.001. Epub 2022 Nov 26.
7
First-In-Human Validation of CT-Based Proton Range Prediction Using Prompt Gamma Imaging in Prostate Cancer Treatments.
Int J Radiat Oncol Biol Phys. 2021 Nov 15;111(4):1033-1043. doi: 10.1016/j.ijrobp.2021.06.036. Epub 2021 Jul 3.
9
A theoretical investigation of adequate range uncertainty margins in proton treatment planning to preserve tumor control probability.
Acta Oncol. 2019 Oct;58(10):1446-1450. doi: 10.1080/0284186X.2019.1627415. Epub 2019 Jun 26.
10
Characterization of prompt gamma ray emission for in vivo range verification in particle therapy: A simulation study.
Phys Med. 2019 Jun;62:20-32. doi: 10.1016/j.ejmp.2019.04.023. Epub 2019 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验