Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
Commun Biol. 2024 Oct 29;7(1):1410. doi: 10.1038/s42003-024-07100-w.
The evolution of morphinan alkaloid biosynthesis in plants of the genus Papaver includes permutation of several processes including gene duplication, fusion, neofunctionalization, and deletion resulting in the present chemotaxonomy. A critical gene fusion event resulting in the key bifunctional enzyme reticuline epimerase (REPI), which catalyzes the stereochemical inversion of (S)-reticuline, was suggested to precede neofunctionalization of downstream enzymes leading to morphine biosynthesis in opium poppy (Papaver somniferum). The ancestrally related aldo-keto reductases 1,2-dehydroreticuline reductase (DRR), which occurs in some species as a component of REPI, and codeinone reductase (COR) catalyze the second and penultimate steps, respectively, in the pathway converting (S)-reticuline to morphine. Orthologs for each enzyme isolated from the transcriptomes of 12 Papaver species were shown to catalyze their respective reactions in species that capture states of the metabolic pathway prior to key evolutionary events, including the gene fusion event leading to REPI, thus suggesting a patchwork model for pathway evolution. Analysis of the structure and substrate preferences of DRR orthologs in comparison with COR orthologs revealed structure-function relationships underpinning the functional latency of DRR and COR orthologs in the genus Papaver, thus providing insights into the molecular events leading to the evolution of the pathway.
植物罂粟属吗啡喃生物碱生物合成的进化包括几个过程的排列,包括基因复制、融合、新功能化和缺失,从而导致了目前的化学分类。据推测,一个关键的基因融合事件导致了关键的双功能酶 retruline 差向异构酶(REPI)的产生,该酶催化(S)-reticuline 的立体化学反转,这导致了鸦片罂粟(Papaver somniferum)中吗啡生物合成的新功能化。与下游酶的新功能化相关的关键酶还有醛酮还原酶 1,2-去氢 retruline 还原酶(DRR),它在一些物种中作为 REPI 的一部分存在,以及 codeinone 还原酶(COR),分别催化途径中的第二步和倒数第二步,将(S)-reticuline 转化为吗啡。从 12 种罂粟属物种的转录组中分离出的每种酶的同源物都能在捕获代谢途径关键进化事件之前的状态的物种中催化各自的反应,包括导致 REPI 的基因融合事件,因此,这表明了途径进化的拼凑模型。与 COR 同源物相比,对 DRR 同源物的结构和底物偏好性进行分析,揭示了结构-功能关系,这些关系为 DRR 和 COR 同源物在罂粟属中的功能潜伏提供了基础,从而为导致途径进化的分子事件提供了深入的了解。