Suppr超能文献

基于数据驱动的非线性共振引起的亚谐波强迫响应建模。

Data-driven modeling of subharmonic forced response due to nonlinear resonance.

作者信息

Axås Joar, Bäuerlein Bastian, Avila Kerstin, Haller George

机构信息

Institute for Mechanical Systems, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland.

Institute of Physics, University of Oldenburg, Ammerländer Heerstrasse 114-118, 26129, Oldenburg, Germany.

出版信息

Sci Rep. 2024 Oct 29;14(1):25991. doi: 10.1038/s41598-024-77639-5.

Abstract

Complex behavior in nonlinear dynamical systems often arises from resonances, which enable intricate energy transfer mechanisms among modes that otherwise would not interact. Theoretical, numerical and experimental methods are available to study such behavior when the resonance arises among modes of the linearized system. Much less understood are, however, resonances arising from nonlinear modal interactions, which cannot be detected from a classical linear analysis. Academic examples of such phenomena have been known, but no systematic method has been developed to detect and model nonlinear resonant interactions purely from numerical or experimental data. Here, we develop such a data-driven methodology that identifies nonlinear resonant response on low-dimensional spectral submanifolds (SSMs) of the dynamical system. Our approach is generally applicable to nonlinear resonances, but we specifically focus here on one particular behavior: subharmonic response in forced nonlinear systems without any resonance among the linearized frequencies of the unforced system. We first illustrate analytically how such a response is born out of a nonlinear resonance hidden in the conservative limit of the system. We then show how this effect can be identified and modeled purely from data. As our main example, we isolate and model previously unexplained response patterns in fluid sloshing experiments.

摘要

非线性动力系统中的复杂行为通常源于共振,共振使得不同模态之间能够进行复杂的能量传递,而这些模态在其他情况下不会相互作用。当共振出现在线性化系统的模态之间时,可以使用理论、数值和实验方法来研究这种行为。然而,对于由非线性模态相互作用引起的共振,人们了解得要少得多,因为这种共振无法通过经典的线性分析检测到。虽然已经知道这种现象的学术例子,但尚未开发出一种系统的方法来纯粹从数值或实验数据中检测和建模非线性共振相互作用。在此,我们开发了一种数据驱动的方法,该方法能够识别动力系统低维谱子流形(SSM)上的非线性共振响应。我们的方法一般适用于非线性共振,但在此我们特别关注一种特定行为:在无外力系统的线性化频率之间不存在任何共振的受迫非线性系统中的亚谐波响应。我们首先从分析上说明这种响应是如何从系统保守极限中隐藏的非线性共振中产生的。然后,我们展示如何纯粹从数据中识别和建模这种效应。作为我们的主要例子,我们在流体晃动实验中分离并建模了以前无法解释的响应模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/898b/11522699/72fcc53a36ce/41598_2024_77639_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验