Suppr超能文献

通过适应性微学习优化在职人员的认知负荷和学习适应性。

Optimizing cognitive load and learning adaptability with adaptive microlearning for in-service personnel.

作者信息

Zhu Bo, Chau Kien Tsong, Mokmin Nur Azlina Mohamed

机构信息

Centre for Instructional Technology and Multimedia, Universiti Sains Malaysia, Penang, Malaysia.

出版信息

Sci Rep. 2024 Oct 29;14(1):25960. doi: 10.1038/s41598-024-77122-1.

Abstract

Adaptive microlearning has emerged as a crucial approach for enhancing the working skills of in-service personnel. This study introduces the design and development of an innovative adaptive microlearning (AML) system and investigates its effectiveness compared to a conventional microlearning (CML) system. The main distinguishing feature of an AML system from a CML system is its adaptive features that tailor the learning experience to individual needs, including personalized content delivery, real-time feedback, and adaptive learning paths. A quasi-experimental study involving 111 in-service personnel (N = 56, N = 55) was conducted. ANCOVA results confirmed that the AML system significantly reduced unnecessary cognitive load due to inappropriate instructional design (mean difference of -20.02, p < 0.05) and significantly improved learning adaptability (mean difference of 40.72, p < 0.05). These findings highlight the potential of adaptive microlearning systems to overcome barriers to effective learning, thereby supporting lifelong learning and professional development in various working contexts.

摘要

适应性微学习已成为提高在职人员工作技能的关键方法。本研究介绍了一种创新的适应性微学习(AML)系统的设计与开发,并将其与传统微学习(CML)系统相比,研究其有效性。AML系统与CML系统的主要区别特征在于其适应性特征,即根据个人需求定制学习体验,包括个性化内容交付、实时反馈和适应性学习路径。进行了一项涉及111名在职人员(N = 56,N = 55)的准实验研究。协方差分析结果证实,AML系统显著降低了因教学设计不当而产生的不必要认知负荷(平均差异为-20.02,p < 0.05),并显著提高了学习适应性(平均差异为40.72,p < 0.05)。这些发现凸显了适应性微学习系统克服有效学习障碍的潜力,从而在各种工作环境中支持终身学习和职业发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a741/11522668/5deaab2db632/41598_2024_77122_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验