Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming City, China.
Department of Orthopedics and Pain, Third People's Hospital of Honghe Autonomous Prefecture, Gejiu, China.
BMC Med Imaging. 2024 Oct 29;24(1):291. doi: 10.1186/s12880-024-01464-5.
This study aims to investigate the risk factors for lymph node metastasis (LNM) in synchronous multiple primary lung cancer (sMPLC) using clinical and CT features, and to offer guidance for preoperative LNM prediction and lymph node (LN) resection strategy.
A retrospective analysis was conducted on the clinical data and CT features of patients diagnosed with sMPLC at the Third Affiliated Hospital of Kunming Medical University from January 1, 2018 to December 31, 2022. Patients were classified into two groups: the LNM group and the non-LNM (n-LNM) group. The study utilized univariate analysis to examine the disparities in clinical data and CT features between the two groups. Additionally, multivariate analysis was employed to discover the independent risk variables for LNM. The diagnostic efficacy of various parameters was evaluated using the receiver operating characteristic (ROC) curve.
Among the 688 patients included in this study, 59 exhibited LNM. Univariate analysis revealed significant differences between the LNM and n-LNM groups in terms of gender, smoking history, CYFRA21-1 level, CEA level, NSE level, lesion type, total lesion diameter, main lesion diameter, spiculation sign, lobulation sign, cavity sign, and pleural traction sign. Logistic regression identified CEA level (OR = 1.042, 95%CI: 1.009-1.075), lesion type (OR = 9.683, 95%CI: 3.485-26.902), and main lesion diameter (OR = 1.677, 95%CI: 1.347-2.089) as independent predictors of LNM. The regression equation for the joint prediction was as follows: logit(p)= -7.569+0.041CEA level +2.270 lesion type +0.517* main lesion diameter.ROC curve analysis showed that the AUC for CEA level was 0.765 (95% CI, 0.694-0.836), for lesion type was 0.794 (95% CI, 0.751-0.838), for main lesion diameter was 0.830 (95% CI, 0.784-0.875), and for the combine predict model was 0.895 (95% CI, 0.863-0.928).
The combination of clinical and imaging features can better predict the status of LNM of sMPLC, and the prediction efficiency is significantly higher than that of each factor alone, and can provide a basis for lymph node management decision.
本研究旨在通过临床和 CT 特征探讨同步多原发肺癌(sMPLC)淋巴结转移(LNM)的危险因素,为术前 LNM 预测和淋巴结(LN)切除策略提供指导。
回顾性分析 2018 年 1 月 1 日至 2022 年 12 月 31 日昆明医科大学第三附属医院诊断为 sMPLC 的患者的临床资料和 CT 特征。患者分为 LNM 组和非 LNM(n-LNM)组。采用单因素分析比较两组患者的临床数据和 CT 特征差异。此外,还采用多因素分析发现 LNM 的独立危险因素。采用受试者工作特征(ROC)曲线评估各参数的诊断效能。
本研究共纳入 688 例患者,其中 59 例发生 LNM。单因素分析显示,LNM 组和 n-LNM 组在性别、吸烟史、CYFRA21-1 水平、CEA 水平、NSE 水平、病变类型、总病变直径、主病变直径、毛刺征、分叶征、空洞征和胸膜牵拉征方面存在显著差异。Logistic 回归分析发现 CEA 水平(OR=1.042,95%CI:1.009-1.075)、病变类型(OR=9.683,95%CI:3.485-26.902)和主病变直径(OR=1.677,95%CI:1.347-2.089)是 LNM 的独立预测因素。联合预测的回归方程如下:logit(p)=-7.569+0.041CEA 水平+2.270病变类型+0.517*主病变直径。ROC 曲线分析显示,CEA 水平的 AUC 为 0.765(95%CI,0.694-0.836),病变类型的 AUC 为 0.794(95%CI,0.751-0.838),主病变直径的 AUC 为 0.830(95%CI,0.784-0.875),联合预测模型的 AUC 为 0.895(95%CI,0.863-0.928)。
临床和影像学特征的联合可以更好地预测 sMPLC 的 LNM 状态,预测效率明显高于单一因素,可为淋巴结管理决策提供依据。