线粒体在心脏功能中的多面角色:深入了解与研究方法。
The multifaceted role of mitochondria in cardiac function: insights and approaches.
机构信息
Computational Medicine Program, Department of Genetics, and McAllister Heart Institute, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC-27599, USA.
出版信息
Cell Commun Signal. 2024 Oct 29;22(1):525. doi: 10.1186/s12964-024-01899-x.
Cardiovascular disease (CVD) remains a global economic burden even in the 21st century with 85% of deaths resulting from heart attacks. Despite efforts in reducing the risk factors, and enhancing pharmacotherapeutic strategies, challenges persist in early identification of disease progression and functional recovery of damaged hearts. Targeting mitochondrial dysfunction, a key player in the pathogenesis of CVD has been less successful due to its role in other coexisting diseases. Additionally, it is the only organelle with an agathokakological function that is a remedy and a poison for the cell. In this review, we describe the origins of cardiac mitochondria and the role of heteroplasmy and mitochondrial subpopulations namely the interfibrillar, subsarcolemmal, perinuclear, and intranuclear mitochondria in maintaining cardiac function and in disease-associated remodeling. The cumulative evidence of mitochondrial retrograde communication with the nucleus is addressed, highlighting the need to study the genotype-phenotype relationships of specific organelle functions with CVD by using approaches like genome-wide association study (GWAS). Finally, we discuss the practicality of computational methods combined with single-cell sequencing technologies to address the challenges of genetic screening in the identification of heteroplasmy and contributory genes towards CVD.
心血管疾病(CVD)即使在 21 世纪仍然是一个全球性的经济负担,其中 85%的死亡是由于心脏病发作引起的。尽管在降低风险因素和增强药物治疗策略方面做出了努力,但在早期识别疾病进展和受损心脏的功能恢复方面仍然存在挑战。由于其在其他共存疾病中的作用,靶向线粒体功能障碍作为 CVD 发病机制中的关键因素,效果并不理想。此外,线粒体是唯一具有抗药性和毒性双重作用的细胞器。在这篇综述中,我们描述了心脏线粒体的起源,以及异质体和线粒体亚群(即纤维间、肌小节下、核周和核内线粒体)在维持心脏功能和与疾病相关的重构中的作用。还讨论了线粒体与核之间的逆行通讯的累积证据,强调了需要通过全基因组关联研究(GWAS)等方法来研究特定细胞器功能与 CVD 的基因型-表型关系。最后,我们讨论了计算方法与单细胞测序技术相结合的实用性,以解决在识别异质体和对 CVD 有贡献的基因方面遗传筛选的挑战。