在医疗资源匮乏地区诊断肩袖撕裂的可能性:非标准前后位X线片能否准确预测肩袖撕裂?

Possibility of diagnosing rotator cuff tears in areas with scarce medical resources: can non-standard anteroposterior radiographs accurately predict rotator cuff tears?

作者信息

Xiong Feng, Zhang Wenbin, Lu Feilong, Feng Jie, Wang Lu, Xiang Yulu, Wang Yongtao, Hu Yimei

机构信息

Department of Orthopedics, Jiang'an County Traditional Chinese Medicine Hospital, Yibin, Sichuan, China.

School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

出版信息

Front Med (Lausanne). 2024 Oct 15;11:1484851. doi: 10.3389/fmed.2024.1484851. eCollection 2024.

Abstract

BACKGROUND

Due to the scarcity and high cost of MRI in resource-constrained regions, prompt diagnosis and treatment of rotator cuff tears remain problematic in these areas. Therefore, extensive research has been conducted to predict rotator cuff tears using simple and affordable anteroposterior radiographs. It remains unclear whether non-standard anteroposterior radiographs would have a notable impact on the preciseness of the diagnosis.

METHOD

We analyzed patients treated for shoulder pain at hospitals. These patients underwent shoulder joint MRI and standard anteroposterior radiographs, were categorized into those with rotator cuff tears and a control group. We assessed whether the radiographs were standard anteroposterior radiographs using classification criteria from previous studies. Three assessors independently measured the acromiohumeral interval, upwards migration index, acromion index, critical shoulder angle, and double-circle radius ratio in radiographic images. The intraclass correlation coefficient and receiver operating characteristic curves were used to assess measurement reliability and predictive capabilities of each predictive method for rotator cuff tears.

RESULTS

This study included 102 non-standard radiographs that met the research criteria for the measurement and analysis. The intragroup correlation coefficients for the acromiohumeral interval, upwards migration index, and double-circle radius ratio were above 0.7 (0.77, 0.71, 0.76), while those for the acromion index and critical shoulder angle exceeded 0.8 (0.86 and 0.87). In non-standard radiographs, the double-circle radius ratio reliably predicted rotator cuff tears ( < 0.05), contrary to the other methods ( > 0.05). The areas under the receiver operating characteristic curves of the double-circle radius ratio, estimated by the three researchers for rotator cuff tears.

CONCLUSION

This study found that non-standard radiographs significantly impaired the diagnostic performance of the acromiohumeral interval, upwards migration index, acromion index, and critical shoulder angle. Only the double-circle radius ratio maintained its predictive power (although this diminished capability may fall short of clinical relevance) and demonstrated high applicability. These findings indicate the need for researchers to prioritize the quality of radiographs and focus on reducing the sensitivity of the prediction method in relation to radiograph quality. The capability exhibited by the double-circle radius ratio warrants further investigation, to facilitate a simplified diagnosis of rotator cuff tears.

摘要

背景

由于资源受限地区磁共振成像(MRI)稀缺且成本高昂,肩袖撕裂的及时诊断和治疗在这些地区仍然存在问题。因此,人们进行了大量研究,以利用简单且经济实惠的前后位X线片来预测肩袖撕裂。非标准前后位X线片是否会对诊断的准确性产生显著影响仍不明确。

方法

我们分析了在医院接受肩部疼痛治疗的患者。这些患者接受了肩关节MRI和标准前后位X线片检查,并被分为肩袖撕裂组和对照组。我们使用先前研究的分类标准评估X线片是否为标准前后位X线片。三名评估人员独立测量了X线图像中的肩峰肱骨头间距、上移指数、肩峰指数、临界肩角和双圆半径比。组内相关系数和受试者工作特征曲线用于评估每种预测方法对肩袖撕裂的测量可靠性和预测能力。

结果

本研究纳入了102张符合测量和分析研究标准的非标准X线片。肩峰肱骨头间距、上移指数和双圆半径比的组内相关系数高于0.7(分别为0.77、0.71、0.76),而肩峰指数和临界肩角的组内相关系数超过0.8(分别为0.86和0.87)。在非标准X线片中,双圆半径比能够可靠地预测肩袖撕裂(<0.05),而其他方法则不然(>0.05)。三名研究人员估计的双圆半径比的受试者工作特征曲线下面积用于诊断肩袖撕裂。

结论

本研究发现,非标准X线片显著损害了肩峰肱骨头间距、上移指数、肩峰指数和临界肩角的诊断性能。只有双圆半径比保持了其预测能力(尽管这种能力的下降可能缺乏临床相关性)并显示出较高的适用性。这些发现表明,研究人员需要优先考虑X线片的质量,并关注降低预测方法对X线片质量的敏感性。双圆半径比所表现出的能力值得进一步研究,以促进肩袖撕裂的简化诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3963/11518800/04e72dedd193/fmed-11-1484851-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索