Rohilla Seema, Awasthi Rajendra, Rohilla Ankur, Singh Sachin Kumar, Chellappan Dinesh Kumar, Dua Kamal, Dureja Harish
Geeta Institute of Pharmacy, Geeta University, Naultha, Panipat, Haryana, India.
Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, India.
ADMET DMPK. 2024 Jul 31;12(4):657-677. doi: 10.5599/admet.2366. eCollection 2024.
This study aimed to improve the stability and prolonged gefitinib release from the nanoliposomes.
Nanoliposomes were prepared by reverse-phase evaporation and optimized using Box-Behnken design to investigate the influence of sonication time ( ), tween 80 / soya phosphatidylcholine ratio ( ), and cholesterol/soya phosphatidylcholine ratio ( ) on nanoliposomes.
Optimized nanoliposomes were quasi-spherical shaped, with a mean dimension of 93.2 nm and an encapsulation efficiency of 87.56±0.17 %. Surface decoration of the optimized batch was done using different concentrations of chitosan. The optimal chitosan concentration required to adorn the nanoliposome surface was 0.01 %. In comparison to unadorned nanoliposomes (82.16±0.65 %), adorned nanoliposomes (78.04±0.35 %) released the drug consistently over 24 h via Fickian diffusion. The IC values for surface-adorned nanoliposomes in A549 and H1299 cells were 6.53±0.75 and 4.73±0.46 μM, respectively. Cytotoxicity of the surface-decorated nanoliposomes may be due to their higher zeta potential and prolonged drug release. At the end of the sixth month, the samples stored at 4 °C were more stable than those stored at 25 °C and 45 °C. The stability of plain nanoliposomes has increased after chitosan coating. Thus, by using different concentrations of chitosan solution as coating material, we can develop a suitable sustained drug-release surface-adorned nanoliposomal formulation.
The developed nanoliposomes may offer a new path for melanoma clinics.
本研究旨在提高吉非替尼纳米脂质体的稳定性并延长其释放时间。
采用反相蒸发法制备纳米脂质体,并使用Box-Behnken设计进行优化,以研究超声处理时间( )、吐温80/大豆磷脂酰胆碱比例( )和胆固醇/大豆磷脂酰胆碱比例( )对纳米脂质体的影响。
优化后的纳米脂质体呈准球形,平均尺寸为93.2 nm,包封率为87.56±0.17%。使用不同浓度的壳聚糖对优化批次的纳米脂质体进行表面修饰。修饰纳米脂质体表面所需的最佳壳聚糖浓度为0.01%。与未修饰的纳米脂质体(82.16±0.65%)相比,修饰后的纳米脂质体(78.04±0.35%)通过菲克扩散在24小时内持续释放药物。表面修饰的纳米脂质体在A549和H1299细胞中的IC值分别为6.53±0.75和4.73±0.46 μM。表面修饰的纳米脂质体的细胞毒性可能归因于其较高的zeta电位和延长的药物释放。在第六个月末,4℃储存的样品比25℃和45℃储存的样品更稳定。壳聚糖包衣后普通纳米脂质体的稳定性有所提高。因此,通过使用不同浓度的壳聚糖溶液作为包衣材料,我们可以开发出合适的持续药物释放表面修饰纳米脂质体制剂。
所开发的纳米脂质体可能为黑色素瘤临床治疗提供新途径。