文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过特征正则化增强开放世界细菌拉曼光谱识别,以提高对未知类别的鲁棒性。

Enhancing Open-World Bacterial Raman Spectra Identification by Feature Regularization for Improved Resilience against Unknown Classes.

作者信息

Balytskyi Yaroslav, Kalashnyk Nataliia, Hubenko Inna, Balytska Alina, McNear Kelly

机构信息

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, United States.

National University of Civil Protection of Ukraine, Cherkasy 18034, Ukraine.

出版信息

Chem Biomed Imaging. 2024 May 6;2(6):442-452. doi: 10.1021/cbmi.4c00007. eCollection 2024 Jun 24.


DOI:10.1021/cbmi.4c00007
PMID:39474520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11503672/
Abstract

The combination of deep learning techniques and Raman spectroscopy shows great potential offering precise and prompt identification of pathogenic bacteria in clinical settings. However, the traditional closed-set classification approaches assume that all test samples belong to one of the known pathogens, and their applicability is limited since the clinical environment is inherently unpredictable and dynamic, unknown, or emerging pathogens may not be included in the available catalogs. We demonstrate that the current state-of-the-art neural networks identifying pathogens through Raman spectra are vulnerable to unknown inputs, resulting in an uncontrollable false positive rate. To address this issue, first we developed an ensemble of ResNet architectures combined with the attention mechanism that achieves a 30-isolate accuracy of 87.8 ± 0.1%. Second, through the integration of feature regularization by the Objectosphere loss function, our model both achieves high accuracy in identifying known pathogens from the catalog and effectively separates unknown samples drastically reducing the false positive rate. Finally, the proposed feature regularization method during training significantly enhances the performance of out-of-distribution detectors during the inference phase improving the reliability of the detection of unknown classes. Our algorithm for Raman spectroscopy empowers the identification of previously unknown, uncataloged, and emerging pathogens ensuring adaptability to future pathogens that may surface. Moreover, it can be extended to enhance open-set medical image classification, bolstering its reliability in dynamic operational settings.

摘要

深度学习技术与拉曼光谱相结合,在临床环境中精确快速地识别病原菌方面显示出巨大潜力。然而,传统的封闭集分类方法假定所有测试样本都属于已知病原体之一,由于临床环境本质上不可预测且动态变化,其适用性有限,现有目录中可能不包括未知或新出现的病原体。我们证明,当前通过拉曼光谱识别病原体的最先进神经网络容易受到未知输入的影响,导致误报率无法控制。为了解决这个问题,首先我们开发了一种结合注意力机制的ResNet架构集成,其对30种分离株的识别准确率达到87.8±0.1%。其次,通过Objectosphere损失函数进行特征正则化,我们的模型在从目录中识别已知病原体方面既实现了高精度,又能有效分离未知样本,大幅降低误报率。最后,训练过程中提出的特征正则化方法在推理阶段显著提高了分布外检测器的性能,提升了未知类检测的可靠性。我们的拉曼光谱算法能够识别以前未知、未编入目录和新出现的病原体,确保对未来可能出现的病原体具有适应性。此外,它可以扩展以增强开放集医学图像分类,提高其在动态操作环境中的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/2a681d428bb4/im4c00007_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/829468cc8ea1/im4c00007_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/4c79e83fa511/im4c00007_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/0aa8751db5a8/im4c00007_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/db8d790d80e3/im4c00007_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/4a6802751d97/im4c00007_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/6f43df7550c7/im4c00007_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/aacd0c797f56/im4c00007_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/c85dcbc4ca50/im4c00007_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/18e0c7b0af4d/im4c00007_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/8f79ce7077c8/im4c00007_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/2a681d428bb4/im4c00007_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/829468cc8ea1/im4c00007_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/4c79e83fa511/im4c00007_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/0aa8751db5a8/im4c00007_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/db8d790d80e3/im4c00007_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/4a6802751d97/im4c00007_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/6f43df7550c7/im4c00007_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/aacd0c797f56/im4c00007_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/c85dcbc4ca50/im4c00007_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/18e0c7b0af4d/im4c00007_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/8f79ce7077c8/im4c00007_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e53/11503672/2a681d428bb4/im4c00007_0011.jpg

相似文献

[1]
Enhancing Open-World Bacterial Raman Spectra Identification by Feature Regularization for Improved Resilience against Unknown Classes.

Chem Biomed Imaging. 2024-5-6

[2]
Identification of Bacterial Pathogens at Genus and Species Levels through Combination of Raman Spectrometry and Deep-Learning Algorithms.

Microbiol Spectr. 2022-12-21

[3]
Raman Spectroscopy in Open-World Learning Settings Using the Objectosphere Approach.

Anal Chem. 2022-11-8

[4]
Deep metric learning framework combined with Gramian angular difference field image generation for Raman spectra classification based on a handheld Raman spectrometer.

Spectrochim Acta A Mol Biomol Spectrosc. 2023-12-15

[5]
Culture-Independent Raman Spectroscopic Identification of Bacterial Pathogens from Clinical Samples Using Deep Transfer Learning.

Anal Chem. 2022-10-25

[6]
Glioma Identification Based on Digital Multimodal Spectra Integrated With Deep Learning Feature Fusion Using a Miniature Raman Spectrometer.

Appl Spectrosc. 2024-9-9

[7]
Scale-Adaptive Deep Model for Bacterial Raman Spectra Identification.

IEEE J Biomed Health Inform. 2022-1

[8]
Rapid identification of bloodstream infection pathogens and drug resistance using Raman spectroscopy enhanced by convolutional neural networks.

Front Microbiol. 2024-7-15

[9]
Classification of pathogens by Raman spectroscopy combined with generative adversarial networks.

Sci Total Environ. 2020-4-4

[10]
Enhancing substance identification by Raman spectroscopy using deep neural convolutional networks with an attention mechanism.

Anal Methods. 2024-8-29

引用本文的文献

[1]
Unveiling the Invisible: Multiscale Molecular Insights through Raman Imaging.

Chem Biomed Imaging. 2025-7-4

本文引用的文献

[1]
Raman Spectroscopy in Open-World Learning Settings Using the Objectosphere Approach.

Anal Chem. 2022-11-8

[2]
RamanNet: a lightweight convolutional neural network for bacterial identification based on Raman spectra.

RSC Adv. 2022-9-16

[3]
Highly Accurate Identification of Bacteria's Antibiotic Resistance Based on Raman Spectroscopy and U-Net Deep Learning Algorithms.

ACS Omega. 2022-8-12

[4]
Open set classification strategies for long-term environmental field recordings for bird species recognition.

J Acoust Soc Am. 2022-6

[5]
Discriminant Analysis PCA-LDA Assisted Surface-Enhanced Raman Spectroscopy for Direct Identification of Malaria-Infected Red Blood Cells.

Methods Protoc. 2022-6-10

[6]
Margin-aware intraclass novelty identification for medical images.

J Med Imaging (Bellingham). 2022-1

[7]
Scale-Adaptive Deep Model for Bacterial Raman Spectra Identification.

IEEE J Biomed Health Inform. 2022-1

[8]
Comparison of functional and discrete data analysis regimes for Raman spectra.

Anal Bioanal Chem. 2021-9

[9]
Usefulness of BioFire FilmArray BCID2 for Blood Culture Processing in Clinical Practice.

J Clin Microbiol. 2021-7-19

[10]
Development of integrated microfluidic platform coupled with Surface-enhanced Raman Spectroscopy for diagnosis of COVID-19.

Med Hypotheses. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索