Wu Qirui, Xu Yidan, Han Songjiu, Chen Anbang, Zhang Jiayu, Chen Yujia, Yang Xiaoxiang, Guan Lunhui
State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, China.
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.
ACS Nano. 2024 Nov 12;18(45):31148-31159. doi: 10.1021/acsnano.4c08896. Epub 2024 Oct 30.
Hydrogels are considered indispensable materials for fabricating flexible devices with their excellent flexibility and workability. To efficiently transform hydrogels into flexible devices, three-dimensional printing technology offers a powerful approach. However, hydrogels suitable for a single printing strategy have proven inadequate for fabricating flexible integrated devices. Herein, we report a simple and two-phase 3D-printed hydrogel (TP-3DPgel) achieved through a controlled microphase-separation strategy. The microphase-separation regions can undergo reversible changes through pH adjustment, giving TP-3DPgel an extremely broad viscosity tuning range from liquid to solid states. This overcomes limitations imposed by extreme rheological properties in different 3D printing processes, making this ink suitable for both liquid-phase digital light processing (DLP) 3D printing and solid-phase direct ink writing (DIW) 3D printing. Simultaneously, the TP-3DPgel exhibits excellent mechanical properties, including high stretchability (>1100%), high strength (0.82 MPa), low hysteresis (∼5.4%), and fatigue resistance. Moreover, TP-3DPgel exhibits high-resolution 3D printing capabilities, making it suitable for both DLP and DIW-3D printing to achieve high-quality fabrication from 2D filaments to 3D structures. Interestingly, we utilized both DIW and DLP-3D printing to fabricate various functional flexible devices, including energy storage devices, sensors, and electronic skins, showing in detail the outstanding compatibility and processability of TP-3DPgel, which offered a reliable strategy for 3D printing functional devices.
水凝胶因其出色的柔韧性和可加工性,被认为是制造柔性器件不可或缺的材料。为了有效地将水凝胶转化为柔性器件,三维打印技术提供了一种强大的方法。然而,事实证明,适用于单一打印策略的水凝胶不足以制造柔性集成器件。在此,我们报告了一种通过可控微相分离策略实现的简单两相3D打印水凝胶(TP-3DPgel)。微相分离区域可通过pH调节发生可逆变化,使TP-3DPgel具有从液态到固态极其宽泛的粘度调节范围。这克服了不同3D打印过程中极端流变特性带来的限制,使这种墨水适用于液相数字光处理(DLP)3D打印和固相直接墨水书写(DIW)3D打印。同时,TP-3DPgel表现出优异的机械性能,包括高拉伸性(>1100%)、高强度(0.82 MPa)、低滞后(约5.4%)和抗疲劳性。此外,TP-3DPgel具有高分辨率3D打印能力,使其适用于DLP和DIW-3D打印,以实现从二维细丝到三维结构的高质量制造。有趣的是,我们利用DIW和DLP-3D打印制造了各种功能性柔性器件,包括储能器件、传感器和电子皮肤,详细展示了TP-3DPgel出色的兼容性和可加工性,为3D打印功能器件提供了一种可靠的策略。