Suppr超能文献

基于多模态迁移学习的宫颈癌淋巴结转移预测。

Prediction of Cervical Cancer Lymph Node Metastasis via a Multimodal Transfer Learning Approach.

机构信息

Department of Gynecology and Obstetrics, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.

Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.

出版信息

Br J Hosp Med (Lond). 2024 Oct 30;85(10):1-14. doi: 10.12968/hmed.2024.0428. Epub 2024 Oct 29.

Abstract

In the treatment of patients with cervical cancer, lymph node metastasis (LNM) is an important indicator for stratified treatment and prognosis of cervical cancer. This study aimed to develop and validate a multimodal model based on contrast-enhanced multiphase computed tomography (CT) images and clinical variables to accurately predict LNM in patients with cervical cancer. This study included 233 multiphase contrast-enhanced CT images of patients with pathologically confirmed cervical malignancies treated at the Affiliated Dongyang Hospital of Wenzhou Medical University. A three-dimensional MedicalNet pre-trained model was used to extract features. Minimum redundancy-maximum correlation, and least absolute shrinkage and selection operator regression were used to screen the features that were ultimately combined with clinical candidate predictors to build the prediction model. The area under the curve (AUC) was used to assess the predictive efficacy of the model. The results indicate that the deep transfer learning model exhibited high diagnostic performance within the internal validation set, with an AUC of 0.82, accuracy of 0.88, sensitivity of 0.83, and specificity of 0.89. We constructed a comprehensive, multiparameter model based on the concept of deep transfer learning, by pre-training the model with contrast-enhanced multiphase CT images and an array of clinical variables, for predicting LNM in patients with cervical cancer, which could aid the clinical stratification of these patients via a noninvasive manner.

摘要

在宫颈癌患者的治疗中,淋巴结转移(LNM)是分层治疗和宫颈癌预后的重要指标。本研究旨在开发和验证一种基于增强多期 CT 图像和临床变量的多模态模型,以准确预测宫颈癌患者的 LNM。 本研究纳入了 233 例经病理证实的宫颈癌患者的多期增强 CT 图像,这些患者均在温州医科大学附属东阳医院接受治疗。使用三维 MedicalNet 预训练模型提取特征。采用最小冗余最大相关法和最小绝对收缩和选择算子回归法筛选特征,最终将特征与临床候选预测因子相结合构建预测模型。采用曲线下面积(AUC)评估模型的预测效能。 结果表明,深度迁移学习模型在内部分验证集中表现出较高的诊断性能,AUC 为 0.82,准确率为 0.88,敏感度为 0.83,特异度为 0.89。 我们基于深度迁移学习的概念构建了一个综合的多参数模型,通过用增强多期 CT 图像和一系列临床变量对模型进行预训练,来预测宫颈癌患者的 LNM,从而可以通过非侵入性的方式帮助这些患者进行临床分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验