Suppr超能文献

理解伏立康唑代谢:整合体外和临床见解的中观基于生理的药代动力学建模框架。

Understanding Voriconazole Metabolism: A Middle-Out Physiologically-Based Pharmacokinetic Modelling Framework Integrating In Vitro and Clinical Insights.

机构信息

Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.

Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany.

出版信息

Clin Pharmacokinet. 2024 Nov;63(11):1609-1630. doi: 10.1007/s40262-024-01434-8. Epub 2024 Oct 30.

Abstract

BACKGROUND AND OBJECTIVE

Voriconazole (VRC), a broad-spectrum antifungal drug, exhibits nonlinear pharmacokinetics (PK) due to saturable metabolic processes, autoinhibition and metabolite-mediated inhibition on their own formation. VRC PK is also characterised by high inter- and intraindividual variability, primarily associated with cytochrome P450 (CYP) 2C19 genetic polymorphism. Additionally, recent in vitro findings indicate that VRC main metabolites, voriconazole N-oxide (NO) and hydroxyvoriconazole (OHVRC), inhibit CYP enzymes responsible for VRC metabolism, adding to its PK variability. This variability poses a significant risk of therapeutic failure or adverse events, which are major challenges in VRC therapy. Understanding the underlying processes and sources of these variabilities is essential for safe and effective therapy. This work aimed to develop a whole-body physiologically-based pharmacokinetic (PBPK) modelling framework that elucidates the complex metabolism of VRC and the impact of its metabolites, NO and OHVRC, on the PK of the parent, leveraging both in vitro and in vivo clinical data in a middle-out approach.

METHODS

A coupled parent-metabolite PBPK model for VRC, NO and OHVRC was developed in a stepwise manner using PK-Sim and MoBi. Based on available in vitro data, NO formation was assumed to be mediated by CYP2C19, CYP3A4, and CYP2C9, while OHVRC formation was attributed solely to CYP3A4. Both metabolites were assumed to be excreted via renal clearance, with hepatic elimination also considered for NO. Inhibition functions were implemented to describe the complex interaction network of VRC autoinhibition and metabolite-mediated inhibition on each CYP enzyme.

RESULTS

Using a combined bottom-up and middle-out approach, incorporating data from multiple clinical studies and existing literature, the model accurately predicted plasma concentration-time profiles across various intravenous dosing regimens in healthy adults, of different CYP2C19 genotype-predicted phenotypes. All (100%) of the predicted area under the concentration-time curve (AUC) and 94% of maximum concentration (C) values of VRC met the 1.25-fold acceptance criterion, with overall absolute average fold errors of 1.12 and 1.14, respectively. Furthermore, all predicted AUC and C values of NO and OHVRC met the twofold acceptance criterion.

CONCLUSION

This comprehensive parent-metabolite PBPK model of VRC quantitatively elucidated the complex metabolism of the drug and emphasised the substantial impact of the primary metabolites on VRC PK. The comprehensive approach combining bottom-up and middle-out modelling, thereby accounting for VRC autoinhibition, metabolite-mediated inhibition, and the impact of CYP2C19 genetic polymorphisms, enhances our understanding of VRC PK. Moreover, the model can be pivotal in designing further in vitro experiments, ultimately allowing for extrapolation to paediatric populations, enhance treatment individualisation and improve clinical outcomes.

摘要

背景与目的

伏立康唑(VRC)是一种广谱抗真菌药物,由于其代谢过程的饱和性、自身形成的自动抑制和代谢物介导的抑制,表现出非线性药代动力学(PK)。VRC PK 还具有高度的个体内和个体间变异性,主要与细胞色素 P450(CYP)2C19 遗传多态性有关。此外,最近的体外研究结果表明,VRC 的主要代谢物伏立康唑 N-氧化物(NO)和羟基伏立康唑(OHVRC)抑制负责 VRC 代谢的 CYP 酶,增加了其 PK 变异性。这种变异性带来了治疗失败或不良事件的重大风险,这是 VRC 治疗的主要挑战。了解这些变异性的潜在过程和来源对于安全有效的治疗至关重要。本研究旨在开发一种全身基于生理学的药代动力学(PBPK)建模框架,该框架阐明了 VRC 的复杂代谢以及其代谢物 NO 和 OHVRC 对母体 PK 的影响,这是一种利用中间方法从体外和体内临床数据中得出的方法。

方法

使用 PK-Sim 和 MoBi 分阶段开发了一种 VRC、NO 和 OHVRC 的耦合母体-代谢物 PBPK 模型。基于可用的体外数据,假设 NO 的形成由 CYP2C19、CYP3A4 和 CYP2C9 介导,而 OHVRC 的形成仅归因于 CYP3A4。两种代谢物均假定通过肾清除排泄,NO 也被认为通过肝消除。实施抑制功能来描述 VRC 自动抑制和代谢物介导的抑制对每种 CYP 酶的复杂相互作用网络。

结果

使用自上而下和中间方法的组合,结合来自多项临床研究和现有文献的数据,该模型准确预测了不同 CYP2C19 基因型预测表型的健康成年人接受不同静脉内给药方案时的血浆浓度-时间曲线。VRC 的预测 AUC 和 C 的所有(100%)值均符合 1.25 倍接受标准,AUC 的总体绝对平均折叠误差为 1.12,C 的总体绝对平均折叠误差为 1.14。此外,NO 和 OHVRC 的所有预测 AUC 和 C 值均符合两倍接受标准。

结论

本研究全面的 VRC 母体-代谢物 PBPK 模型定量阐明了药物的复杂代谢,并强调了主要代谢物对 VRC PK 的重大影响。该综合方法结合了自下而上和中间方法,从而考虑了 VRC 自动抑制、代谢物介导的抑制以及 CYP2C19 遗传多态性的影响,增强了我们对 VRC PK 的理解。此外,该模型可以在设计进一步的体外实验中发挥关键作用,最终允许外推到儿科人群,增强治疗个体化并改善临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b6/11573852/55762e7180e5/40262_2024_1434_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验