Bappoo Nikhilesh, Tongpob Yutthapong, Hakim Matina, Myers Jenny, Panting Emma, Chapman Karen E, Thomson Adrian J W, Moran Carmel M, Kelsey Lachlan J, Srinivasan Vijayalakshmi, James Joanna L, Clark Alys R, Doyle Barry J, Wyrwoll Caitlin S
Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; School of Human Sciences, The University of Western Australia, Perth, Australia.
School of Human Sciences, The University of Western Australia, Perth, Australia; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
Placenta. 2024 Dec;158:175-184. doi: 10.1016/j.placenta.2024.10.020. Epub 2024 Oct 28.
The complex arborization of the feto-placental vasculature is crucial for optimal fetal nutrition, waste exchange and ultimately, development. Ethical and experimental limitations constrain research into the human placenta, hence experimental animal models such as mice and rats, are crucial to understand placental function. It is unclear how well the mouse and rat feto-placental vascular structure emulates human. Moreover, the implications of differences in vascular structure, especially in arborization, for placental function remain unclear.
We use micro-computed tomography imaging, high frequency Doppler ultrasound and computational fluid dynamics to characterize feto-placental vasculature structure and haemodynamics in mice, rats, and human.
Our data suggest that despite structural differences between rat and mouse placenta, haemodynamics are similar and that both hold applicability to investigating feto-placental structure and function. We show that human cotyledons demonstrate vascularity-dependent haemodynamic behaviour (including flow deceleration and oxygen exchange) similar to rodents and can be analysed in the same spectrum as rodents. Finally, we show strong structure-function relationships when interspecies datasets are combined; notably, we demonstrate that surrogate measures such as vascularity, can be used to estimate placental oxygen exchange function.
Pre-clinical placental research utilising rat and mouse placentae to understand the impact of feto-placental arborization on placental function and fetal development can inform the human context.
胎儿 - 胎盘血管系统的复杂分支对于胎儿的最佳营养、废物交换以及最终的发育至关重要。伦理和实验限制制约了对人类胎盘的研究,因此诸如小鼠和大鼠等实验动物模型对于理解胎盘功能至关重要。目前尚不清楚小鼠和大鼠的胎儿 - 胎盘血管结构与人类的相似程度如何。此外,血管结构差异,尤其是分支差异对胎盘功能的影响仍不明确。
我们使用微计算机断层扫描成像、高频多普勒超声和计算流体动力学来表征小鼠、大鼠和人类的胎儿 - 胎盘血管系统结构和血流动力学。
我们的数据表明,尽管大鼠和小鼠胎盘之间存在结构差异,但血流动力学相似,且两者都适用于研究胎儿 - 胎盘结构和功能。我们发现人类胎盘小叶表现出与啮齿动物相似的依赖血管的血流动力学行为(包括血流减速和氧气交换),并且可以与啮齿动物在同一范围内进行分析。最后,当将种间数据集合并时,我们显示出强烈的结构 - 功能关系;值得注意的是,我们证明诸如血管化等替代指标可用于估计胎盘氧气交换功能。
利用大鼠和小鼠胎盘进行的临床前胎盘研究,以了解胎儿 - 胎盘分支对胎盘功能和胎儿发育的影响,可以为人类情况提供参考。